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Abstract
Knowledge Graph (KG) is playing an increasingly important role
in various AI systems. For e-commerce, an efficient and low-cost
automated knowledge graph construction method is the founda-
tion of enabling various successful downstream applications. In
this paper, we propose a novel method for constructing structured
product knowledge graphs from raw product images. The method
cooperatively leverages recent advances in the vision-language
model (VLM) and large language model (LLM), fully automating
the process and allowing timely graph updates. We also present a
human-annotated e-commerce product dataset for benchmarking
product property extraction in knowledge graph construction. Our
method outperforms our baseline in all metrics and evaluated prop-
erties, demonstrating its effectiveness and bright usage potential.
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1 Introduction
Knowledge graphs (KG), directed graphs representing information
and relationships between entities, are commonly used for efficient
information processing. In the domain of e-commerce, KGs play
a crucial role in scaling up both inventory management and cus-
tomer service by leveraging various applications [11, 15], including
recommendation systems [9, 20, 21, 23, 25], question answering
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service [12, 22, 41], information and intention discovery [33], and
knowledge completion [29].

Recent studies [7, 24, 34, 40] show improvements extracting
information from documents and texts for knowledge graph con-
struction. However, in practice, due to the rapid changes in the
fields of e-commerce, informative text descriptions of products are
often expensive and time-consuming to acquire through human
labeling. In contrast, raw images of products [16, 31] are widely
available yet under-explored as sources of automated knowledge
graph construction.

In this work, we explore how to establish an automatic process
that directly uses product images as the primary sources to con-
struct complex knowledge graphs. Without human-in-the-loop,
the process of populating knowledge graphs particularly benefits
the fast-paced e-commerce sector, where product catalogs are con-
stantly evolving and expanding, so that timely update is achieved in
such an environment. Moreover, product images contain essential
information that is language-agnostic, semantic-rich, and involves
subtle visual cues, ensuring accurate product representations to-
ward multilingual and multicultural e-commerce platforms.

Despite the advantages, establishing an automatic process for
KG with product images is a non-trivial work and faces many chal-
lenges. Firstly, unlike documents and texts which directly include
the entities, properties, and relationships, product images are com-
plex and may contain distractions. Extracting useful information
thus requires sophisticated image understanding. Secondly, not all
relevant information for KG construction is directly visible or ex-
plicitly stated in the product image itself. For example, categorizing
a chocolate image into candy requires the ability to reason based
on common knowledge and contextual understanding. Thirdly,
unconstrained triple generation may not fully capture the hierar-
chical nature of product properties in e-commerce. For instance,
the category property can have a hierarchical relationship, "choco-
late" falls under "candy," which falls under "food". Many previous
works construct KGs by either generating [17, 24, 40] or completing
[3, 4] triples without additional constraints, which could result in
graphs lacking depth and diversity if directly applied to e-commerce
products.

To address these limitations, we propose a novel method that
is equipped with the recent advances in vision-language models
(VLMs) and large language models (LLMs), enabling hierarchical
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Figure 1: Method Overview. Stage 1: An empty graph is first initialized with target properties and corresponding data types.
Stage2: for each product, information is extracted with VLMs, organized and improved by LLM.

knowledge graph generation given any number of product im-
ages. The graph follows a schema containing both properties and
their corresponding data types. We start with instruction-tuned
vision language model (InternVL2-8B [5, 6]) to extract detailed in-
formation from product images. Then, we use schema-augmented
multi-turn conversation to ensure the description contains more
diverse and detailed attributes and relationships. We further use
the newest state-of-the-art large language model, Llama3.1-70B [8],
to reason and infer KG relevant properties not found in the image,
and hierarchically expand the existing links. In the process, SGLang
[38] is selected to generate all LLM responses in strictly reliable
structured formats, ensuring the output graph follows the schema.
Finally, we design programmatical merge to reduce redundancy
among similar entities.

Besides the proposed method, we introduce a human-annotated
e-commerce product image dataset. It consists of 105 images, each
containing a product image, 4 categorical properties, 1 numeri-
cal property, and JSON structured metadata. We benchmark our
method on the dataset and release the dataset to the community
for further research.

Our contribution is in three folds:
• To the best of our knowledge, we are the first to propose
a novel fully automatic e-commerce method to generate
knowledge graphs from only product images.

• We present a small e-commerce product image dataset for
benchmarking the task.

• Our method outperforms the baseline method modified from
previous works on multiple metrics.

2 Related Work
2.1 Text Extraction from Images
Image understanding has made significant strides in recent years,
particularly in the domain of text extraction from images. Image
captioning models aim to generate natural language descriptions of
images. Image captioning models like LEMON [10] are often based
on encoder-decoder architectures. The encoder projects images into
latent space, and a language decoder decodes semantic information
into text descriptions. However, their outputs are often general

and lack the specificity required in e-commerce applications. Image
tagging models like RAM [37] take a step forward, focusing on
identifying and labeling specific objects within an image, providing
more fine-grained information, but still lacking the capability of
identifying texts and concepts. The emergence of multimodal LLMs
[32, 35], especially instruction-tuned large vision language models
[13], provides a significant advancement in image understanding.
These VLMs can output detailed descriptions based on user prompts,
making it possible to align generated texts with desired properties.
In this work, we use InternVL2-8B [5, 6], a robust open-source
VLM as our image description extractor. While the model provides
detailed descriptions, this information is unstructured and may not
contain all the required information for KG construction.

2.2 Knowledge Graph Construction
Knowledge graph construction aims to convert less organized raw
data into more programmatically processable structured graphs.
Recent advancements in deep learning and natural language pro-
cessing (NLP) [1, 2, 14, 27] have significantly enabled studies in
information extraction and knowledge graph construction, leading
to improved data management and utilization. Due to the advance-
ments in embedding training, some studies use embeddings to
represent and discover complex structures in KGs. ComplEX [26]
uses complex-valued embeddings to perform link prediction at a
linear time and space complexity. KoPA [36] performs triple clas-
sification task by training an LLM adapter for injecting structural
embedding. However, these works are limited to individual sub-
tasks of completing a KG. Consequently, many works have shifted
their attention to constructing knowledge graphs from documents
[24, 28, 39] and texts [7, 34, 40]. These recent approaches have lever-
aged advancements in transformer [27] architecture based large
language models (LLMs) trained on internet-scale datasets [18, 19]
to enhance or construct knowledge graphs. For example, TKGCon
[7] uses GPT-4 [1] to generate theme-related entities and relations
from a theme-specific corpus to form KGs. However, few works are
leveraging raw images for KG construction. In this work, we use
Llama3.1 [8], in collaboration with a VLM to generate high-quality
and diverse knowledge graphs for e-commerce product inventory.
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3 Constrained Hierarchical Knowledge Graph
Generation

In this section, we will show an overview of our Knowledge Graph
construction method.

3.1 Method Overview
The knowledge graph construction can be roughly divided into two
core stages. An abstract visualization of our method can be found
in Figure 1.

• Graph Initialization. When creating a new knowledge
graph for an inventory or an e-commerce system, two com-
ponents are used for initializing and preparing the knowl-
edge graph: identifying target properties and creating
schema. An empty inventory knowledge graph will be cre-
ated once initialization is finished.

• Cycle of Enrollment. An e-commerce inventory can grow
continuously as more products are added. Therefore, our pro-
posed method treats each product as the fundamental unit of
graph creation. Our method cycles through four sequential
steps for each product. A product-centric knowledge graph
will be generated with four steps: Extracting, Formatting
and Inferring, Hierarchy Expansion, and Graph Prun-
ing. Each product knowledge graph will be added to the
previous inventory KG.

• Inventory Usage Once the knowledge graph is initialized,
it can be loaded into a graph database and used in various
downstream applications.

4 Introduction
4.1 Graph Initialization
Identifying Target Properties. The first step in the initializa-
tion phase is to identify and select the properties that will serve
as the foundation of the knowledge graph. Not all entities and
relationships are essential when utilizing a knowledge graph for
e-commerce. The process of identifying target properties aims to
determine the most relevant and valuable attributes for products
in the inventory. This can be done automatically, manually, or
semi-automatically. In automatic mode, the pipeline prompts an
instruction-tuned LLM [8, 14] to list the most important properties
when describing an e-commerce product. Alternatively, a person
can designate the properties that are important for their system.

Creating Schema.While the properties to be generated have
been defined, it is important to standardize the structure and for-
mat of different products. The schema defines the data types of
each property, which serves as a blueprint for each new product
subgraph. By enforcing rules and constraints, the schema helps
reduce the introduction of redundant or conflicting data when new
products are added, which provides better scalability and down-
stream task efficiency. Enforcing data types also acts as a fail-safe,
preventing LLMs from generating invalid information. In this work,
we use a prompted autoregressive LLM to find the data type 𝑡 that
maximizes the predicted probability for each given property 𝑥 :

𝑡 ′ = argmax𝑡 ′∈{𝑖𝑛𝑡,𝑓 𝑙𝑜𝑎𝑡,𝑠𝑡𝑟,𝑐ℎ𝑜𝑖𝑐𝑒𝑠 }𝑃 (𝑡 |𝑥) (1)

If the data type of a property is identified as int or float, a unit
of measurement is similarly predicted with an autoregressive LLM.
The model predicts the next token following the prompt "{property}
of a product could be 5 ". If the data type is identified as choices, LLM
is prompted to generate diverse distinct choices that can generalize
to most products, with an additional "Other" choice added.

Following the above procedure, a complete schema can be cre-
ated. A product subgraph takes the product name as the root node,
all edges point to properties starting from the product root node.
By default, we use the schema generated fully automatically:

• Product Name: string
• Category: choices [Electronics, Fashion, Home and Kitchen,
Beauty and Personal Care, Food and Beverages, Sports and
Outdoors, Baby and Kids Products, Health and Wellness,
Automotive, Arts and Crafts, Pet Products, Office and School
Supplies, Industrial and Scientific, Musical Instruments, Toys
and Games, Others]

• Brand: string
• Price: float (USD)
• Primary Package Color: choices [White, Black, Gray, Beige,
Brown, Tan, Green, Red, Blue, Yellow, Light Blue, Pink, Baby
Blue,Mint Green, Silver, Gold, Copper, Purple, Orange, Turquoise,
Others]

• Package Material: choices [Plastic, Paper, Cardboard, Glass,
Metal, Wood, Fabric, Foam, Bamboo, Bioplastic, Molded Pulp,
Corrugated, Others]

• Package Shape: choices [Rectangular, Cylindrical, Spherical,
Oval, Triangular, Irregular, Flat, Tubular, Conical, Geometric,
Others]

• Weight: float (kg)

4.2 Cycle of Enrollment
With the graph initialized and the schema in place, individual prod-
ucts can be processed and added to the knowledge graph iteratively.
The Cycle of Enrollment consists of four key steps: Extracting,
Formatting and Inferring, Hierarchy Expansion, and Graph
Pruning. Additionally, while we primarily focus on studying KG
construction from product images, our method inherently supports
textual product description as input by skipping the Extract phase.
Each phase addresses specific challenges in constructing a reliable
and hierarchical product knowledge graph for e-commerce.

Extracting product descriptions from the raw image is the first
step of enrolling an image. To tackle the challenge of extracting
rich information from images, we employed a recent state-of-the-
art open-source vision language model, InternVL2 [5, 6]. We first
convert the generated schema into text descriptions to augment the
original prompt. With schema description embedded in the user
prompt, the VLM can generate unstructured or semi-structured
text descriptions based on the input product image, ensuring that
the generated descriptions cover all relevant product attributes. To
maximize information coverage, we employ a multi-turn extraction
process, where we prompt VLM to provide additional details in a
second turn of the conversation. This will cover more visual cues
compared to single-turn extraction to enable more accurate missing
information inference in future steps. More turns are possible yet
not employed for better speed and scalability.
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Table 1: Comparison of our method against the baseline on various properties. Accuracy is reported for categorical properties,
while accuracy@threshold is used for numerical properties. All results shown in percentage (%)

Method Primary
Package Color

Package Shape Package
Material

Category Weight
(Acc@0.01)

Weight
(Acc@0.05)

Baseline (zero-shot) 26.67 3.81 19.05 0.00 9.78 9.78
Baseline w/ schema 55.24 49.52 54.29 62.86 13.04 16.30
ours w/o reasoning 81.9 76.19 81.9 95.24 55.43 63.04
ours w/o multi-turn 73.33 75.24 79.05 89.52 54.35 69.57
ours 82.86 77.14 86.67 97.14 61.96 73.91

Formatting and Inferring generated description comes after
information extraction. While visible information is already in-
cluded in the text description, the information is not directly usable.
Similar to the extracting phase, we use multi-turn conversation to
align the response with the predefined schema. Since some infor-
mation may not be available from the image, we use Llama3.1-70B
[8] to first analyze all the extracted text descriptions, encouraging
intermediate reasoning steps [30]. Then based on the reasoning, we
prompt the model to infer the remaining properties. After the gen-
eration in the first turn, we use SGLang [38] for regular expression
constrained generation. The output is forced to be generated in
JSON format, strictly following the data type and schema structure.
This guarantees that the response will always be generated reliably
containing all requested properties, and additionally ensures the
response can be parsed programmatically.

Hierarchical Expansion attempts to introduce additional enti-
ties between the product node and the abstract category node. This
phase is crucial for enhancing the knowledge graph’s structure and
utility in e-commerce applications. An LLM is prompted to analyze
and generate an intermediate entity between a category property
and the product name. This expansion is repeated several times so
that multiple intermediate entities are inserted. For example, the
category link starts with "Dark Chocolate Bar → Food and Bev-
erage", an intermediate nodes "Chocolate" and "Dark Chocolate"
are sequentially added during the expansion. The resulting link
becomes "Dark Chocolate Bar → Dark Chocolate → Chocolate →
Food and Beverage". To further improve the diversity of the graph,
multiple hierarchical expansions are performed in parallel, each
independently choosing intermediate nodes from the predicted
tokens with top-k sampling. By introducing multiple levels of ab-
straction, the system can represent products at various levels of
breadth with more fine-grain relationships.

Pruning is the final step of enrolling a product. When properties
are created with LLM free-form generation, there can be entities
sharing exactly the same or similar meaning, these can be merged
into one node. In our method, we applied a simple yet effective
method that merges all properties that share the same words in
different order or letter cases. This reduces the complexity of the
final knowledge graph so that downstream tasks can be performed
more efficiently.

This Cycle of Enrollment is executed for each product, allowing
for the incremental growth of the knowledge graph and adapting to
the rapid changes in the e-commerce domain. Because each product
subgraph is generated independent of the size of the existing inven-
tory, as shown in Figure 2. The linear scaling allows our approach

to be scaled to a large inventory size without increasing the cost of
generating the graph for each image.

Figure 2: Time taken to generate KG for an image remains
similar as the number of images in the inventory increases.

By combining advanced VLMs and LLMs with constrained gen-
eration, our approach can handle diverse product types and extract
rich, consistent structured information from visual data, reliably
following the schema. The resulting hierarchical knowledge graph
provides a foundation for sophisticated e-commerce applications,
including enhanced search capabilities, personalized recommenda-
tions, and advanced product analytics.

4.3 Inventory Usage
In the final stage after the enrollment, one can easily leverage the
KG to perform user-defined tasks. Apart from the classic product
description retrieval and recommendation systems, our method
enables intelligent attribute inquiry like packaging materials and
weight estimation, offering users a diverse range of applications.

5 Experiment
In this section, we first gather a product image dataset. Then, we use
our method to generate a knowledge graph following the method
described in the previous section. We compare the ground truth
annotation with generation results and evaluate the effectiveness
of our method based on several metrics. Unless otherwise specified,
we use InternVL2-8B in bfloat16 and Llama3.1-70B in int4. The
experiments are conducted on 6 RTX 4090 GPUs.

5.1 Dataset Collection
We collected 120 images and their corresponding metadata using
BlueCart Walmart Data Product API1. The result contains informa-
tion such as image, product name, and other information displayed
1https://www.bluecartapi.com/
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on the Walmart website2. Among these, 105 images are valid, we
then manually labeled the properties Category, Primary Package
Color, Package Material, Package Shape, and Weight based on our
generated schema. We perform a series of experiments using only
the images resized to 448x448 pixels as inputs.

5.2 Results
In this part, we will show our performance on the collected dataset
compared to a baseline method. We set our baseline by modifying
the zero-shot KG construction method proposed in AutoKG [40]
to generate triples from an image using the product name as the
subject. Following AutoKG, we use property names as the list of
predicates to prompt InternVL2, and the objects of the generated
triples are treated as the predicted properties. In addition to the zero-
shot baseline, we add our schema-augmented prompt to the start of
the baseline prompt, providing additional context for the expected
response. Then, we perform an ablation study on our method. First,
we evaluate the performance of our complete method. We then
conduct ablation studies by removing the multi-turn conversation
during VLM information Extraction or excluding the intermediate
LLM reasoning step during the Format and Infer stage, to assess
the impact of these components on the overall results. We evalu-
ated the following predictions against the annotation. Primary
Package Color and Package Shape are categorical properties
that can be directly observed from the image with little reasoning
and inference. Package Material is a categorical property that
can be directly observed from the image, but requires some prior
knowledge (e.g., material texture) to infer. Category is a categori-
cal property that cannot be directly observed from the image, and
requires inference with prior knowledge and contextual reasoning
on information like brand name.Weight is a numerical property
that can be found on most of the product images, but due to non-
standardized units of measurement across products, calculations
are needed to convert to the unit in schema (kg).

For categorical properties, accuracy is used as the metric. For
numerical property, we first compute the error ratio 𝑒 between
predicted value 𝑣𝑝𝑟𝑒𝑑 and annotated value 𝑣𝑔𝑡 by

𝑒 =
|𝑣𝑝𝑟𝑒𝑑 − 𝑣𝑔𝑡 |

𝑣𝑔𝑡
(2)

Then we use accuracy@threshold as our metrics, where a predic-
tion is considered correct if the error ratio 𝑒 is strictly lower than
the threshold. We report accuracy@0.01 and accuracy@0.05 for
the numerical property. Table 1 shows our primary result against
baseline and ablation studies. We also show a subgraph containing
3 enrolled products constructed our complete method in Figure 3.

5.3 Analysis
As shown in Table 1, our method exceeds directly prompting VLM
for triple generation. By augmenting the baseline with our schema
description, predictions for all categorical properties gain large
improvements. We notice that this is mainly because when no
schema descriptions are embedded in the prompt, VLM tends to give
predictions that are not in the choices. Adding schema description
provides contextual information for VLM to rectify its answers.
2https://www.walmart.com/

Figure 3: Example KG subgraph of 3 enrolled products.

By removing LLM reasoning from our method, performance
on Weight prediction and Package Material drops significantly.
Accuracy@0.05 for Weight dropped over 10%. This shows that
reasoning is important for analyzing more ambiguous properties
that require contextual understanding. With weight information
directly shown in most images, our method without reasoning fails
to standardize units more frequently than the complete method.
The LLM tends to directly provide weight in its original units of
measurement, even though it is prompted to respond in kilograms.
Our result shows that the reasoning step leverages the LLM’s ability
to incorporate external knowledge and perform context-sensitive
analysis, which is crucial for property inference.

Furthermore, the drop in performance when removing the multi-
turn conversation during VLM information extraction highlights
the importance of including diverse additional visual information in
image descriptions. The multi-turn process allows the model to pro-
gressively add visual cues and details into the descriptions, which
could be beneficial for subsequent steps to analyze and dynamically
adjust predicted properties based on the context.

Even without reasoning or multi-turn conversation, our method
still outperforms the baseline by a large margin, showing the ro-
bustness of our method when constructing links from image data.

6 Limitations
While our work shows promising results on various metrics using
high-quality images, additional work may be required for low-
resolution images.

7 Conclusion
In this paper, we propose a novel method that fully automatically
generates a knowledge graph from scratch using only image data.
We propose several collaborative components to analyze and infer
schema-compliant properties from each product image. We propose
a benchmark for knowledge graph generation from images, with
emphasis on the correctness of generated properties. We compare
our method against an adaptation of a previous work [40], and
perform ablation studies, showing the effectiveness of our method
and several key features.
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