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Abstract
Effective ranking of products relevant to a user’s query
and interest is the main goal of e-commerce product rank-
ing. In this context, ranking irrelevant products or those
mismatched with the intent of the user query results in sub-
optimal user experience. Providing high-quality, relevant
search rankings requires large labelled datasets for training
powerful deep learning (DL) based ranking pipelines. How-
ever, such large datasets are costly and time-consuming to
obtain. Another important facet that influences search rank-
ing quality is the intent and ambiguity in the user’s search
query. Hence, data paucity and query ambiguity are two
ever-present challenges impeding the success of modern
deep learning (DL) based e-commerce ranking models. In
this work, we present the first ever investigation of employ-
ing large-language models (LLMs) as approximate knowledge
sources to counter these challenges and improve the perfor-
mance of off-the-shelf ranking models, under data paucity
and query ambiguity. Specifically, we undertake the first
ever investigation of developing an LLM-Modulo method
to improve the search ranking performance of off-the-shelf
ranking models. Our experiments demonstrate notable per-
formance improvements in ranking quality of these off-the-
shelf models, when employed in an LLM-Modulo manner.
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1 Introduction
Deep learning models have demonstrated great prowess in
natural language processing (NLP) [11] on complex tasks
like neural machine translation [2, 13] and text summariza-
tion [23]. The recent emergence of language understanding
benchmarks like GLUE [32] has also seen the successful
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application of DL models also demonstrating their (rudi-
mentary) ability for language understanding. In light of
these successes in the NLP domain, research efforts have
also investigated the effectiveness of these DL architectures
for information retrieval tasks [21] and specifically for popu-
lar commercial applications like content search and product
ranking [33]. However, unlike in traditional NLP contexts, a
common failure mode of many such efforts has been the un-
availability of large labelled datasets (training data paucity)
to train DL pipelines employed for information retrieval
tasks like content ranking as highlighted by many popular
works [24]. Another key challenge for the sub-par perfor-
mance of traditional NLP based pipelines for content rank-
ing (especially in e-commerce applications) is the fact that
most modern NLP pipelines are grounded in distributed rep-
resentation learning based on word embeddings [20] which
are ineffective at understanding query semantics and more
importantly ineffective at understanding query intent of a
user query. Modeling user intent of a query has been found
to be crucial for effective product ranking, thus serving as
a core component of several research efforts [7, 17, 28] in
product ranking. An effective search ranking paradigm is
hence one with the ability to effectively perform under (i)
training data paucity and (ii) query intent ambiguity during
model training.

Data augmentation is an effective counter to training
data paucity and has been widely employed successfully in
various computer vision [9, 36] tasks and also to improve
performance on NLP tasks like text classification [34], sen-
timent analysis [1] and conditional text generation [18].
Similarly, query intent estimation has been significantly in-
fluenced by the ambiguity of the query [14, 29] and hence,
obtaining a representation of query ambiguity and conduct-
ing ambiguity conditioned training of the ranking model
can significantly affect the learned representation.

Recently, large language models (LLMs) like GPT [6],
T5 [25], and BERT [11] revolutionized many aspects of the
NLP pipeline. Some of the most recent dialogue models like
ChatGPT fromOpenAI and Llama 2 [30] fromMeta research
have gone a giant step further, demonstrating significant
performance improvements across variegated text gener-
ation, summarization, information retrieval and question
answering tasks. They have also been used for text data
augmentation [10]. Although it is easy to consider these
extremely large LLM dialogue models as a panacea, they are
mostly approximate knowledge sources [16] that can be em-
ployed in a variety of constructive roles in conjunction with
down-stream task models towards improving performance
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on a target task of interest. Such frameworks have been aptly
termed ‘LLM-Modulo‘ frameworks by recent works [16].

In line with this, we demonstrate the effectiveness of LLM
models for improving the task of product ranking when
employed in an ‘LLM-Modulo‘ fashion. Specifically, our con-
tributions are as follows:
•We are the first to explore and successfully demonstrate
the effectiveness of LLM-Modulo frameworks for e-commerce
product ranking.
•We specifically investigate novel methods of countering
the challenges of training data paucity through LLM-based
training data augmentation.
•We also investigate a novel LLM-Modulo training curricu-
lum based on query intent ambiguity, to train a downstream
product ranking model.
• We perform our experiments in the context of a recent
state-of-the-art, search ranking model and demonstrate per-
formance improvements according to well accepted (MRR,
nDCG) metrics resulting from our LLM-Modulo framework.

2 LLM-Modulo Search Ranking
Query ambiguity and data paucity are two important and
ever present problems that challenge ranking models. Over-
coming these challenges is crucial for high quality and rele-
vant information retrieval and ranking systems.

Essentially, difficulty of the ranking task increases with
the ambiguity of the query thereby warranting explicit treat-
ment of query ambiguity quantification mechanisms [8].
Other works [19] have demonstrated that query ambiguity
is a key factor in determining query concepts which are
a significant indicator of the intention of the user. There
have also been large-scale classification approaches [27]
involving expensive human annotation to develop models
that identify (harder) ambiguous queries enabling them to
be treated differently from (easier) specific queries.

Query ambiguity, when coupled with data scarcity, ex-
acerbates learning challenges. One effective technique to
improve model performance of machine learning models is
curriculum learning (CL) [4]. Humans tend to learn more
effectively when examples are presented in a meaningful
sequence that progressively introduces more concepts and
increasing complexity, and that is predominantly the inspi-
ration behind CL [5]. The application of CL has also been
proven to enhance neural network performance in natural
language processing tasks [31].

A primary challenge in developing CL approaches, how-
ever, is the notion of designing a hardness score for each
training instance. To address this challenge, previous works
have leveraged transfer learning [15] [35] to score examples
on "difficulty" or "complexity". In our work, we address this
challenge by directly querying the approximate knowledge
of pre-trained LLM models with a query and a correspond-
ing prompt requesting a query intent ambiguity score.

Availability of large volumes of training data remains a
crucial factor governing the effective performance of DL
models [22]. Consequently, DL models typically struggle to
learn generalizable representations under data paucity (i.e.,
under low volumes of training data). Hence, the challenge
of data paucity often necessitates innovative approaches,
like curriculum learning (CL), to improve the DL training

process. Another approach to counter the bane of training
data paucity is data augmentation. The data augmentation
approach requires diversifying the existing data by apply-
ing transformations, such as rotations and flips to images,
or syntactic modifications in NLP such as synonym substi-
tution, random word insertion/deletion, and, in our case,
rephrasing of textual data.

To tackle the challenges of query intent ambiguity and
training data paucity, we employ an LLM-Modulo frame-
work, composed of Meta’s Llama 3 (a transformer-based
LLM model). In our case, we propose two potential use
cases for these models in ranking systems: 1) generating ad-
ditional and helpful data to enhance model performance and
2) Augment existing data to improve the diversity and quan-
tity of training inputs, simulating real-world variations and
noise without the need to collect new data. The framework
also includes a Cross Encoder that serves as the ranker that
determines the relative ranking of each product by their rel-
evance to the query. The use of LLMs for query rephrasing
and query intent ambiguity scoring offers distinct advan-
tages, especially in zero-shot prediction scenarios. LLMs
possess broad world knowledge and the ability to general-
ize across various tasks without explicit task-specific data,
thanks to their pre-training on diverse text corpora. This
makes them ideal for generating diverse and meaningful
query rephrasings and ambiguity scores. Moreover, LLMs
eliminate the need for costly data curation and manual label-
ing, which can be resource-intensive, whereas the marginal
increase in computational cost to query LLMs is significantly
outweighed by the efficiency and robustness of the resulting
predictions.

As shown in Fig. 1(a) and Fig. 1(b), the modeling para-
digm of the proposed use cases can be divided into the two
following points:
• LLM Intent Ambiguity Characterization + Sequential
Curriculum Design. This modeling paradigm employs the
prompt-able LLM to characterize intent ambiguity scores of
each user query in the training dataset. The application of
curriculum learning here includes sorting the queries in de-
creasing order of intent ambiguity, and then presenting the
dataset to the ranking model in 25th percentiles, introducing
more examples each time.
• LLM Query Data Augmentation/Generation. Simi-
larly to how the LLM is used in generating intent ambiguity
scores, the LLM is also used to generate variants of each
user query, used to train the ranking model. This is done to
augment the data and thereby counter the data paucity prob-
lem. By generating one augmented variant of each query
in our training dataset, we are able to essentially double
the size of the available training data simply by employing
pre-trained LLMs as approximate knowledge sources for
query augmentation.

3 Experimental Setup
Dataset Description. In our experiments, we employ the
well studied Amazon ESCI large dataset [26] with over
170,000 unique queries. The dataset provides search query-
product pairs where each query has up to 40 product results,
with each result having an ESCI relevance judgment (Exacts,
Substitutes, Complements, and Irrelevants) that indicates
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Figure 1: Two representativemodeling paradigms employing generative large languagemodels in ranking systems.

the relevance of each product to the query. We employ this
dataset to investigate the ‘Query Product Ranking’ task.
To simulate the training data paucity experiment, we only
consider a small subset of 5,000 unique queries from this
dataset. . Specifically, we employ a randomly sampled sub-
set of 4,000 unique queries as the training data to train our
ranking model and the remaining 1,000 unique queries are
employed for testing and performance evaluation.
ModelDescription.MSMCE. As our baselinemodel, we em-
ploy a state-of-the-art MSMARCOCross-Encoder (MSMCE)
Information retrievalmodel1, pre-trained on theMSMARCO
passage ranking dataset [3]. Our choice is motivated by the
fact that this was the model employed for evaluation on the
ESCI dataset in the original paper [26]. We fine-tune the
randomly initialized MSMCE model on our training dataset
comprising of 4,000 queries from the ESCI dataset. MSMCE
uses the following hyper-parameters for the CrossEncoder
model: maximum length=512, activation function=identity,
and number of labels=1 (binary task).

CL-MSMCE. The first variant of the baseline MSMCE
model, CL-MSMCE, introduces the use LLM for the intent
ambiguity characterization of each of the 4000 training
queries. We leveraged Llama 3 (8b version), one of Meta’s
LLama 3 [12] pre-trained generative text models, during the
training of the model to obtain intent ambiguity of each
query on a scale of 0 to 1, with 1 being completely ambigu-
ous and 0 being completely un-ambiguous. Specifically, we
prompt the LLM as follows: “what is the intent ambiguity
of ‘query’ on a scale of 0 to 1, with 1 being clearly ambigu-
ous and 0 being not ambiguous? only get me the numerical
value” for each query. We demonstrate an example of the
pretrained model’s interaction with one of the queries in Fig.
1(a). In brief, the model should only print out a float value.
However, it exhibited inconsistencies in scoring the queries,
with a predominant clustering of scores in the range of 0.6
1https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2

to 0.8. The lowest intent ambiguity score observed was 0.35.
Notably, as anticipated, certain queries were assigned an
intent ambiguity score approaching 1.0, which may not ac-
curately reflect their true level of ambiguity. Once the intent
ambiguity scores are generated, we utilize these scores to
implement linear curriculum learning into the training of
the baseline model. Specifically, we sort the data by intent
ambiguity scores in descending order and then have sequen-
tial training with increasing data sizes for each epoch. In
the first epoch in this approach, we train the model using
only the first 25th percentile of the data (1000 queries). In
the second epoch, we add the next 1000 queries (50th per-
centile), effectively training on the first 2000 data points.
This process continues in 25-percentile increments until the
final epoch, where the entire dataset is used.

QAug-MSMCE: The second variant of the baselineMSMCE
model, QAug-MSMCE model, leverages another applica-
tion of LLMs: generating artificial and simulated queries for
model training. While the goal of CL-MSMCE model is to
leverage LLM to allow a new setup to how the data is in-
troduced, the objective of QAug-MSMCE is to augment the
training dataset and rigorously evaluate model performance
to determine if the incorporation of such synthetic queries
leads to any enhancement in the model evaluation metrics
compared to the other versions of the model. We use the
same 4000 unique queries that are used previously, and feed
the LLM with the prompt: "Given query ’query’, Give me
a rephrasing of it. Only print the new generated query as
a string and don’t return an explanation.", As shown in Fig
1(b). This process effectively doubles the amount of train-
ing queries where we have 7960 queries2. It is important
to note that the augmented queries retain the data values
of their original counterparts, ensuring consistency in the
training process. We then feed the new dataset in the origi-
nal MSMCE setup where we don’t use curriculum learning.
240 queries were removed during data cleaning of 8K query augmented data
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(QAug+CL)-MSMCE: The third and final variant of the
model, (QAug+CL)-MSMCE, follows the same setup as the
first variant, using sequential curriculum learning and
utilizing the LLM during the training of the model for intent
ambiguity characterization. However, after demonstrating
the effectiveness of the query augmentation in the sec-
ond variant, we used the expanded dataset from the second
variant to evaluate if this larger and augmented dataset
could further enhance performance. We again run the same
prompt as the one shown in Fig. 1(a) on all the unique
queries, including the new augmented ones, and again sort
them in decreasing order of those intent ambiguity scores.
Once that is done, we use the same curricula as one in CL-
MSMCE where we introduce the batches of increasing 25th
percentiles, culminating in having the entire dataset (100th
percentile) by the fourth and last epoch.
Training Setup. The training of all variants of the MSMCE
ranking models includes employing MSE loss for training,
batch size=32, learning rate=7e-6, training epochs=4.
Experimental Evaluation In line with the original pa-
per introducing the dataset [26], the 4 relevance categories
considered for each query and product pair are: Exacts, Sub-
stitutes, Complements, and Irrelevants, with respective gain
scores, which are set to distinguish between the relevance
categories, of 1.0, 0.1, 0.01, 0.0. As an extension of this, when
testing the models, we use those target label/gain to com-
pare the gain scores of the queries where we see queries that
have scores greater than or equal to the gain values ( i.e., >=
1.0 (E) on one instance, >= 0.1 (S) on another, etc.) Doing this
allows us to consider only the products that have an E label
relevant when setting the target gain to be greater than or
equal to 1.0, and consider products with an E and S labels
when the target gain is greater than or equal to 0.1, and
consider E, S, and C labels when the target gain is greater
than or equal to 0.01. However, there exists a corner case
where nDCG and MRR are not well defined ( i.e., when all
results are irrelevant or all are relevant), where we compare
the gain of each query to be greater than or equal to 0.0. In
the testing run for each of the three instances of compar-
ison, we consider products that have a gain score greater
than or equal to the target gain to be relevant (positive) and
those that have a gain score less than the target gain to be
irrelevant (negative.) We then leverage a sentence trans-
former evaluator, ‘CERerankingEvaluator’, which evaluates
the CrossEncoder ranking models, where it is given a search
query, a list of positive ’relevant’ documents, and a list of
negative ’irrelevant’ documents, and computes Normalized
Discounted Cumulative Gain (nDCG@10) and Mean Re-
ciprocal Rank (MRR@10) as shown in Table 1. The way
the ’CERerankingEvaluator’ calculates the MRR and nDCG
scores is by considering the first and highest relevant prod-
uct for each query, and then getting the average MRR and
nDCG scores of those products. For consistency and compa-
rability, we adhere to the same testing procedures for each
variant as employed with the baseline model, allowing us
to effectively compare the evaluation results.

4 Results & Discussion
In this section, we report performance comparisons of the
baseline MSMCE model and its three LLM-Modulo variants,

for the query product ranking task, as evaluated on the pop-
ular ESCI dataset [26]. Through our evaluation, we strive
to demonstrate the effectiveness of LLM-Modulo solutions
for ranking systems.

4.1 Improving Ranking Under
Data-Paucity with LLM-Modulo Design

In Table 1, we report the overall performance according to
the popular mean reciprocal rank (MRR) and normalized
discounted cumulative gain (nDCG) ranking metrics.

Variant ESC Label MRR@10 NDCG@10

MSMCE

E 0.8153 0.7225
E | S 0.9061 0.8351

E | S | C 0.9203 0.8496

CL-MSMCE

E 0.8241 0.7233
E | S 0.9135 0.8343

E | S | C 0.9242 0.8504

QAug-MSMCE

E 0.8647 0.7696
E | S 0.9333 0.8610

E | S | C 0.9436 0.8708

(QAug+CL)-MSMCE

E 0.8832 0.7995
E | S 0.9374 0.8640

E | S | C 0.9466 0.8727

Table 1: Evaluation scores for the ESC labels for the
MSMCE model and three LLM-Modulo variants, eval-
uated using mean reciprocal rank (MRR) and normal-
ized discounted cumulative gain (NDCG) metrics.

We notice that all the LLM-Modulo variants (i.e., CL-
MSMCE; QAug-MSMCE; (QAug+CL)-MSMCE) outperform
the vanilla MSMCE ranking model. Further we breakdown
the performance by different product relevance categories
and notice that this performance improvement trend is con-
sistent across all relevance categories. The best performing
model, i.e., (QAug+CL)-MSMCE is the LLM-Modulo variant
of MSMCE trained on an augmented training dataset (aug-
mented queries are obtained from an LLM) where training is
guided by a query intent ambiguity score based curriculum
to allow the model to learn unambiguous queries before
encountering challenging ambiguous ones.

According to the MRR@10 metric, (QAug+CL)-MSMCE
model achieves an 8.32% performance improvement over
vanilla MSMCE, on ranking products that are exact matches
to the query (category ‘E‘), 3.45% on ranking products that
are either exact matches or substitutes to exact matches of
a query (i.e., category ‘E|S‘) and 2.86% on ranking products
that are exact matches, substitutes or complements (i.e., cat-
egory ‘E|S|C’). We further verify similar results across the

Figure 2: nDCG Mean Percentage Improvement of
(QAug+CL)-MSMCE over MSMCE
same product category splits (i.e., exact matches E, exact
matches or substitutes E|S, exact matches, or substitutes
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Query LLM-augmented query
the white shadow complete series dvd Complete series of ’The White Shadow’ on DVD
samsung galaxy j7v covers pink Samsung Galaxy J7V phone cases in pink color
5d mark iii Canon EOS 5D Mark III
75 carat diamond rings Large diamond engagement rings with 75 carats
gpu gtx 750 NVIDIA GeForce GTX 750
fujifilm insta mini Fujifilm Instax Mini 9 Camera
disney roller skates Disney-themed roller skates

Table 2: Examples of original queries and the corresponding LLM augmented variant.

Figure 3: Intent Ambiguity vs MRR score for E label
for four models

or complements E|S|C) using the NDCG metric. Fig. 2 de-
picts the performance improvements of the (QAug+CL)-
MSMCE model over vanilla MSMCE. Table 1 and Fig. 2 both
indicate significant relative performance improvements of
(QAug+CL)-MSMCE model (over vanilla MSMCE) in the
strictest case of ranking of exact matches with lower perfor-
mance degradation for easier contexts (namely E|S, E|S|C).

4.2 LLMs for Synthetic Query Generation
In Fig. 1(b), we observe an example where the LLM is able
to capture the query in the prompt and correctly infer the
intention of the user which is to buy a Visa gift card worth
$50, and not the less likely scenario of the user wanting to
buy 50 vias gift cards. The query variant generated by the
LLM to this somewhat ambiguous query may be construed
as less ambiguous and capturing the original intention of
the user, thereby enriching our training data with another
high quality, relatively un-ambiguous query.

We list other such interesting examples of query augmen-
tations obtained from the LLM, in Table 2. We notice from
the table, a convincing demonstration of the LLM’s com-
prehension to a diverse set of queries of varied topics and
ambiguity levels, all of which the LLM is able to faithfully
augment owing to its vast approximate world knowledge.
For instance, the LLM recognizes that "5d mark iii" is the
"Canon EOS 5D Mark III." In another instance, the model
was able to identify "samsung galaxy j7v covers pink" as
"Samsung Galaxy J7V phone cases in pink color," where it
knows the user is intending to search for pink phone cases
for a Samsung Galaxy J7V phone. Separately, even in the
context of short, coded queries, the augmentations gener-
ated (e.g."gpu gtx 750," is augmented to "NVIDIA GeForce
GTX 750,") show the LLM’s data augmentation capabilities.
Another demonstration of the benefits of the approximate
world knowledge of the LLM is the augmentation of the
query "75 carat diamond rings" into "Large diamond en-
gagement rings with 75 carats." This augmentation reflects
the model’s comprehension that diamond rings are often

associated with engagements and that a 75-carat diamond
is extraordinarily large, correlating carat size with the per-
ception of grandeur and significance. Such transformations
indicate the model’s capacity to apply real-world knowledge
and cultural associations, further enhancing its effectiveness
in query refinement and data augmentation.

This ability of the LLM to intelligently generate rich and
intent-aligned variants of user queries, contributes signifi-
cantly to the QPR performance improvement of the QAug-
MSMCE model over vanilla MSMCE. In Table 1, we notice
that QAug-MSMCE (i.e., ,the model trained with the LLM
augmented queries) achieves a mean performance improve-
ment of 3.9% over vanilla MSMCE across product categories.

4.3 LLMs for Ambiguity Conditioned
Curriculum Design

Finally, we also characterize the effect of LLM-modulo CL
training of the ranking model, conditioned on query ambi-
guity scores generated by the LLM. The characterization
is performed in terms of MRR for various ambiguity bins.
Specifically, we consider bins 0.25 - 0.5 (low ambiguity); 0.5
- 0.75 (medium ambiguity) and 0.75 - 1.0 (high ambiguity).
Fig. 3 clearly shows that more ambiguous queries are better
resolved by sequential curriculum learning-based models.
5 Conclusion & Future work
In this work, we undertake the first ever investigation of
augmenting search ranking models in an LLM-modulo man-
ner for improved performance under data paucity, for e-
commerce product ranking. Specifically, our investigations
are confined to the the query product ranking task on the
well studied ESCI dataset.We demonstrate two LLM-Modulo
mechanisms to improve ranking model performance for
the QPR task. The first being developing a training cur-
riculum conditioned on query ambiguity where the query
ambiguity scores are derived from an LLM. We show that
the curriculum learning variant of a standard ranking base-
line achieves a mean performance improvement of 1.08%
over the baseline in the strictst evaluation case (i.e., exact)
product relevance category as per the MRR metric. The
second LLM-Modulo mechanism we have incorporated to
counter data paucity and improve effectiveness of ranking
is intelligent query augmentation via. the LLM to generate
additional training data for our model at no additional label-
ing cost. The search ranking variant trained with this aug-
mented dataset achieves a mean performance improvement
of 6.06% over the baseline across the strictest evaluation of
exact match product category as per the MRR metric. Our
results demonstrate that LLM-Modulo frameworks can have
significant positive impact on ranking systems.
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