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ABSTRACT
Large language models (LLMs) offer substantial potential for au-
tomating labeling tasks, showcasing robust zero-shot performance
across diverse classification tasks. The LLM-generated reasons that
accompany these classifications contain signals about the quality
of the classifications. Estimates of quality of these reasons can, in
essence, be used to detect potentially incorrect predictions. Con-
ventional metrics for scoring reasons such as ROUGE-L and BLEU
scores depend on ground truth reference reasons, which are chal-
lenging and expensive to acquire, and are not available at inference
time for new examples. In this paper, we use a product classification
dataset to evaluate two reasoning scoring strategies that do not
rely on reference reasons: one involving an LLM-based scorer and
another using recently proposed ROSCOE metrics. Our analysis
reveals that LLM-based approaches are computationally intensive,
while aligning ROSCOE metrics with human judgment presents
challenges. Consequently, we propose an extension to the ROSCOE
framework called ReScorer, which achieves 7% better alignment
with human judgment compared to LLM-based evaluation and 59%
better than ROSCOE, while being 89% cheaper compared to LLM-
based scoring.

1 INTRODUCTION
Large Language Models (LLMs) such as Claude [1], GPT-3 [2] and
PaLM [3] are capable of generating fluent and realistic responses to
a wide variety of prompts. Recent work has also demonstrated the
use of LLMs as annotators [4, 5]. Wei et al. [6] showed that LLMs
are capable of providing a reason for their decision along with the
end classification.

In classification tasks, the quality of a reason generated by an
LLM can be a reliable indicator of the quality of the classification
itself [6]. For instance, in e-commerce, an LLM may predict that a
product does not violate a safety rule, and provide a corresponding
reason. An instance of a safety rule is sale of Sky Lanterns in dry
regions, which can be fire hazards. If a scoring algorithm assigns a
low score to the reason generated by LLM allowing the sale of the
product under the rule, the product can be flagged for human audit
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before a safety violation happens. Hence, a metric measuring reason
quality can help to identify potentially incorrect LLM classifications.

While traditional metrics like ROUGE-L [7] and BLEU [8] have
been proposed for evaluating text generation models in summa-
rization and machine translation, computing these metrics requires
ground truth texts. This makes them unsuitable for inference time
applications such as the Sky Lantern use case above. Consequently,
there is a need for unsupervised metrics to evaluate the reasons
generated by LLMs.

Zhang et al. [9] propose an unsupervised metric that uses models
like BERT [10] to evaluate the output of text generation models.
They show their BERT-based scoring mechanism better reflects
human judgement than ROUGE-L or BLEU. Recent work by Man-
akul et al. [11] finds that BERT-based methods may have difficulty
capturing subtle differences in reasons, leading to similar scores
for right and wrong reasons. Hence Manakul et al. [11] propose
using LLMs as verifier to evaluate language model reasons. The
LLMs can be prompted multiple times to obtain consistency or
confidence scores [12]. However, computing LLM-based metrics
can be computationally expensive as they involve potentially costly
LLM calls.

Recent work by Golovneva et al. [13] proposes evaluating lan-
guage models using smaller embedding based models to compute
metrics across different dimensions like semantic alignment, se-
mantic similarity, logical inference, and grammatical correctness.
This approach, named ROSCOE, is useful for identifying specific
areas in which a reason is deficient. Its main limitation is that it
produces 14 metrics rather than one, which makes it difficult to
rank or filter reasons. There is also no guarantee that these metrics
are all aligned with human preferences.

In this paper, we first assess two state-of-the-art evaluation meth-
ods for the language model output: LLM-based evaluation and
ROSCOE. Our experiments use different task descriptions from a
diverse set of programs within Amazon, with the goal of classifying
products based on their adherence to the given task description.
While LLM-based evaluation yields metrics that align more closely
with human judgment, it is hindered by a significant computational
cost, to the tune of $2000 per million reason scores for our tasks [14].
On the other hand, ROSCOE metrics are inexpensive to compute at
$225 per million reasons evaluated on 1 GPU of p3.2xlarge. How-
ever, as we show in this paper, the plurality of ROSCOE metrics and
their misalignment with human preferences renders them ill-suited
for reason ranking and filtering. Motivated by these limitations, we
propose Reasoning Scorer (ReScorer), a modification to ROSCOE
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that maps its 14 metrics to a single output. We accomplish the map-
ping with a lightweight logistic regression model trained on a small
set of human judgments.

Our findings reveal that ReScorer outperforms both LLM-based
and ROSCOE metrics in detecting low quality reasons (7% better
than LLM-based scoring and 59% better than ROSCOE), underscor-
ing the robustness of the ReScorer algorithm, while preserving a
lower computational cost—89% reduction in computational cost
compared to LLM-based scoring.

The remainder of this paper is structured as follows - Section 2
introduces various approaches to evaluate LLM reasons, including
ReScorer. Section 3 outlines our experimental setup. We present
key findings of the study in Section 4, followed by conclusions in
Section 5.

2 REASON SCORING ALGORITHMS
In this section, we highlight different approaches we used to eval-
uate LLM reasons for product classification use cases. Section 2.1
introduces the LLM-based approach we used for evaluating reasons
from LLMs; Section 2.2 introduces ROSCOE suite of metrics used
for evaluating LLM output; and we propose ReScorer in Section 2.3.

2.1 LLM-based scoring
LLMs have recently shown to be effective in assessing information
consistency between a document and its summary in zero-shot
settings [11, 15]. We adopt a prompting strategy similar to Manakul
et al. [11] for evaluating reasons produced by LLMs. In this work we
use Claude-v2 [1] as a verifier LLM to evaluate reason output from
Claude-v1. Our use case is product classification based on a task
description (also called a policy document). We used the following
prompt to score a previously generated LLM reason:

Given the following policy document:
{task_description}

Given this product to classify:
{product_features}

Given this response from the model classifying the product
according to the policy:
{claude_response}

Please provide a score as either 0 or 1 about how good the
response from the LLM is. Assign a score of 0 for a bad response
and 1 for a good response.

To assess the likelihood that a provided reason is “good", we
employ a multi-prompt strategy. This involves prompting the model
multiple times with different hyperparameters for the 𝑝 in the top-
𝑝 decoding strategy [16], resulting in various outputs. We then
utilize these outputs to compute the probability of the reason being
considered “good." The computation of this probability is conducted
using the following equation:

𝑃 (Good Reason) = 1
𝑁

𝑁∑︁
𝑖=1
I(𝑂𝑖 = 1)

where 𝑁 represents the number of times LLM is prompted, 𝑂𝑖

represents 𝑖th output from LLM and I represents the indicator
function defined as follow:

I(𝑂𝑖 = 1) =
{
1 if 𝑂𝑖 = 1
0 otherwise

This approach is very computationally expensive as we have to
prompt the verifier LLM multiple times.

2.2 ROSCOE
Golovneva et al. [13] propose a suite of metrics to evaluate language
models output on different dimensions such as semantic alignment,
semantic similarity, logical inference, and grammatical correctness.

The semantic alignment and semantic similarity metrics utilize
an embedding model to generate embeddings for task descriptions,
product details, and LLM reasons. These embeddings facilitate the
computation of various scores, including faithfulness of the LLM
output (reason) to the input text (task description + product details),
and informativeness, which gauges the model’s ability to refer to
the input text during output generation. In product classification
tasks, it is crucial for the model to accurately refer to the task
description. Higher informativeness scores indicate that the LLM
output effectively refers to the task description, contributing to
improved classification accuracy and good reasoning capability of
the model.

Logical inference metrics gauge probability of contradiction be-
tween the source text and LLM output. Lower values of probability
of contradiction are desirable, indicating minimal contradiction
between the human-provided source text and the LLM output. Ad-
ditionally, grammatical correctness assesses the coherence of the
model output, with perplexity from GPT-2 utilized for this eval-
uation. Refer to Appendix B for comprehensive list of ROSCOE
metrics.

Though ROSCOE is a powerful framework for unsupervised
reasoning evaluation, there are two issues with using it to detect
bad reasons. The first has to do with the fact that ROSCOE involves
multiple scores as they evaluate LLM model capabilities across
various dimensions. However, deriving decisions from multiple
metrics poses a challenge, as it remains unclear how to prioritize
different dimensions effectively. Additionally, ROSCOE metrics
may not be fit for specific problem domains, being overly general
in nature. In some scenarios, good reasons may score lower in
certain metrics than bad ones. For example, reasons may exhibit
poor grammar metrics because they quote product details or task
descriptions, which are themselves grammatically incorrect. These
limitations emphasize the need for an additional layer to aggregate
and align metrics tailored to specific applications.

2.3 ReScorer
To address the aforementioned issues, we introduce a lightweight
Reasoning Scorer—ReScorer (Figure 1). ReScorer uses a simple lo-
gistic regression model [17] to map ROSCOE metrics to a single
score between 0 and 1. To ensure that ReScorer is aligned with
human preferences, we fit the logistic regression model to a small
number of human-assigned evaluations of LLM generated reasons.
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4 piece shower 
curtain set…
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Figure 1: An overview of ReScorer. Given a prompt and cor-
responding LLM response, ReScorer first computes a set of
unsupervised metrics via ROSCOE, then recombines them
into a single score with a logistic regression model trained
on human annotated data.

The benefits of ReScorer include its ability to align ROSCOE
metrics with human judgements, its low computational cost, and
the fact that it outputs a single summary score. If we want to use a
score to rate LLM outputs, it is important for the score to adequately
represent human preferences. Furthermore, when we need to assess
a large number of LLM generated reasons, the low computational
cost is critical. ReScorer achieves this by adding only a lightweight
logistic regression model on top of ROSCOE. Consolidating per-
formance into a single score, as opposed to utilizing a variety of
metric, facilitates the decision making in the downstream tasks.

ReScorer’s main drawback is that it requires labeled data to learn
the mapping component, even though the metric itself is unsuper-
vised, that is it does not require reference reasons during scoring
of reasons. Fortunately, the labeled data needed to train ReScorer is
generally easier to obtain compared to ground truth generative out-
put. Annotators need only assign LLM output with scores based on
a target task, rather than composing text outputs (e.g. summaries or
answers to questions). Another potential limitation is that, ROSCOE
metrics that are the foundation for ReScorer may sometimes fail to
capture relevant characteristics of LLM answers. However, it is easy
to supplement the current ROSCOE metrics with additional metrics
tailored for specific applications within the ReScorer framework.

3 EXPERIMENTAL SETUP
Dataset. We curated a corpuswith each sample of the form <task

description, product features, task label, reason> , with
764 total tasks. Figure 2 shows a sample of data in the corpus. The
<task description, product features, task label> part of
the corpus are human annotated. The remaining reason part of
the corpus is derived by passing <task description, product
features, task label> to an off-the-shelf LLM, Claude-v1 [1].
Table 1 records the statistics of our corpus. Human annotators
were asked to score these reasons as low, medium and high quality.
Refer to Appendix C for annotation guidelines provided to human
annotators.

After annotation, there were 2,906 reasons with high scores, 4
medium scores, and 52 low scores, leaving us with a severely im-
balanced dataset. Therefore we simplified the scores and added
two types of synthetic bad reasons to the dataset. For simplicity,
we mapped the original scores to binary scores by assigning 0 to
low scores and 1 to both medium and high scores. We also added
two types of synthetic negative examples: easy and hard perturba-
tions, 𝑃𝑒 and 𝑃ℎ . Both mismatch <task description, product

Figure 2: Sample data from the dataset.

features> of a sample with <reason> from another sample in the
original dataset. And we assign both scores of 0. We obtain easy
perturbations by fixing a task and product then randomly select-
ing a reason from another example in the dataset. Such examples
should be easy to detect since the perturbed reason is usually from
a different task and hence easy to detect. We construct hard pertur-
bations similarly, except we sample the new reason from another
example with the same task. These negatives are more subtle be-
cause the reason references the correct task, but the wrong product.
Further, we create a 80/20 train/test split, stratifying on the ground
truth score. Only ReScorer uses the train set, and we evaluate all
approaches on the test set.

Perturbations # Samples % Positives Avg. Samples
per Task

𝐻 2962 98.2% 3.9
𝑃𝑒 2962 0% 3.9
𝑃ℎ 2962 0% 3.9

Overall 8886 32.7% 11.6

Table 1: Summary of dataset statistics. 𝐻 is the set of human
annotations, 𝑃𝑒 is the set of easy perturbations, and 𝑃ℎ is
the set of hard perturbations. “Overall” represents the full
dataset. All perturbations include all 764 tasks.

ROSCOE. As baselines, we test two straightforward techniques
for mapping ROSCOE metrics to a single score. ROSCOE avg.
computes the mean of the 14 ROSCOE metrics. And ROSCOE
one-hot uses the metric which has the best correlation with the
target score. We specifically use Somers’ D correlation [18], elab-
orated at the end of this section. In this case, the selected metric
was repetition_step (refer Appendix B for details on ROSCOE
metrics). Both methods generate unsupervised metrics. To cal-
culate semantic alignment and semantic similarity metrics, we
employ the off-the-shelf embedding model from Hugging Face,
specifically using all-MiniLM-L6-v2 [19]. For logical inference
metrics, we adopt the model recommended by Golovneva et al. 13:
DeBERTa-v3-large-mnli-fever-anli-ling-wanli. This model,
based on the DeBERTa-large architecture [20], is fine-tuned on
the MNLI, ANLI, and WNLI datasets [21]. To assess grammatical
correctness, we use perplexity output from GPT-2 [22].
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ReScorer training. We trained ReScorer’s supervised module (lo-
gistic regression) on the train set with hyperparameter optimization
and 3-fold cross-validation using scikit-learn [17] (see Appendix A
for details). We obtained the best overall performance by training
on human annotations plus hard perturbations (see Section 4.2).
Unless otherwise noted, the results in the following section all use
this model.

Metric. Similar to Golovneva et al. [13], we use Somers’ D1 [18]
to measure the correlations between the scorers and human judge-
ments. The scorers output scores between 0 and 1, and human
judgements are either 0 (for bad reasons) or 1 (for good reasons).
Somers’ D is a way to measure the correspondence between two
rankings. Somers’ D closer to 1 represent strong agreement, while
closer to -1 indicates strong disagreement. To better understand
how well the methods detect different types of negative exam-
ples, we evaluate each on different subsets of the test data: human
annotations 𝐻 , human annotations + easy perturbations (𝐻, 𝑃𝑒 ),
human annotations + hard perturbations (𝐻, 𝑃ℎ), and the full test
set —human annotations + easy perturbations + hard perturbations
(𝐻, 𝑃𝑒 , 𝑃ℎ).

4 RESULTS
Our results are organized into four sections. Section 4.1 gives the
main results: a comparison of the methods of Section 2 on our
reasoning dataset. Section 4.2 explores the effects on ReScorer of
adding perturbations to the training data. We consider specific
examples of where ReScorer correctly identifies bad reasons in
Section 4.3. And Section 4.4 further discusses why ROSCOE metrics
alone are insufficient for scoring reasons for specific applications.

4.1 Main results

Somers’ D

Method H (H, Pe) (H, Ph) (H, Pe, Ph)
Random -0.3081 0.0159 0.0356 0.0278
LLM-based [1] 0.2294 0.8485 0.2629 0.5470
ROSCOE avg. [13] 0.2138 -0.0165 0.0651 0.0213
ROSCOE one-hot [13] 0.1242 -0.0032 0.0686 0.0310
ReScorer -0.1111 0.9616 0.2934 0.6195

Table 2: Somers’ D between ground truth scores and scores
assigned by reason evaluationmethods. We evaluated on sub-
sets of the test set with various types of perturbations: hu-
man annotations𝐻 , easy perturbations 𝑃𝑒 , and hard perturba-
tions 𝑃ℎ . The best results on each subset are bold and the sec-
ond best are underlined. We compare our method, ReScorer,
against four baselines: Random–randomly assigned scores
(selected uniformly from {0, 1}), LLM-based–scores assigned
by Claude, ROSCOE avg.–the mean of ROSCOE metrics, and
ROSCOE one-hot–the best-performing single ROSCOE met-
ric.

1We use the SciPy implementation [23].

Table 2 shows the Somers’ D values for all reason evaluation
methods on different types of perturbations. ReScorer demonstrates
strong performance in distinguishing good and bad reasons when
we include any or all perturbation types, improving significantly
over LLM-based scoring by 7% (Somers’ D increase from 0.54 to
0.61) and ROSCOE by 59% (Somers’ D increase from 0.03 to 0.62).
However, it struggles on the severely imbalanced human anno-
tated data, many of which it confuses for negatives. LLM-based
scoring provides a reasonable level of performance across different
strata. Whereas the ROSCOE approaches do poorly at detecting
perturbations, suggesting that ReScorer is needed to re-weigh the
unsupervised metrics. Interestingly, we find that a simple average of
ROSCOE metrics performs reasonably well on human annotations
𝐻 , but this may be because this set is over 98% good reasons.

The Somers’ D values reported here are generally lower than the
values in [13], which suggests that our task may be more challeng-
ing. Indeed, the bad reasons from the human annotations and the
hard perturbations are often wrong in subtle ways. For example,
it may be hard to classify as good or bad a reason that is trying to
determine whether a vegetable-derived oil is meant for cooking or
personal use. Both uses have similar keywords such as “organic”,
“vegan”, and “cold-pressed”. To determine whether the reason is
good, one must essentially solve the underlying classification prob-
lem. It is not reasonable to expect methods based on unsupervised
metrics, like ROSCOE and ReScorer, to consistently solve such tasks.

4.2 Training data and ReScorer
We explore the effects of supplementing the human-annotated
training data by varying the types of perturbations added to the
training data and evaluating ReScorer’s performance on different
subsets of the test set. Table 3 shows the results. Unsurprisingly, we
find that adding perturbed examples improves ReScorer’s ability
to detect perturbations, i.e. performance on (𝐻, 𝑃𝑒 , 𝑃ℎ)—Somers’
D 0.6195 in Table 3. Adding only hard negatives/perturbations
improves performance the most, but the larger message is this: the
biggest gains come from adding any extra negative examples. As
with any supervised model, ReScorer performs best when its train
and test distributions are aligned. Therefore, on human annotated
test data 𝐻 , ReScorer does best when no perturbations are added
to the training data, in which case it is comparable to the LLM
baseline (0.2294 from Table 2). To optimize performance on such
data, it may be best to omit added perturbations. However, given
that our annotated dataset is highly imbalanced, it is still important
to add perturbations to ensure robustness against some reasoning
errors. Since the perturbations are essentially free, the main cost
incurred is a minor increase in training time.

4.3 Anecdotes
It is informative to consider specific examples where ReScorer
detects bad reasons (Table 4). In each example, the reason contains
relevant information along with one or more hallucinations, and
in each case ReScorer correctly assigns the reason a low score,
i.e. below 0.5. It is promising that ReScorer is able to detect such
nuances in LLM-based reasons.
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Test perturbations

Train
perturbations H (H, Pe) (H, Ph) (H, Pe, Ph)

𝐻 0.2188 0.4929 -0.0919 0.1902
(𝐻, 𝑃𝑒 ) 0.1243 0.9820 0.0643 0.5090
(𝐻, 𝑃ℎ) -0.1111 0.9616 0.2934 0.6195

(𝐻, 𝑃𝑒 , 𝑃ℎ) -0.0183 0.9834 0.2593 0.6119

Table 3: Somers’ D for ReScorer models with different types
of perturbations included in the training data (Train pertur-
bations). We report results on different segments of the test
set (Test perturbations).

Class Product features LLM reason

Cooking
ther-
mome-
ters

gomesme - dual channels wire-
less wireless waterproof bbq
food thermometer thermome-
ter digital cooking meat food
oven grilling with timer...

This product mentions
wireless and waterproof
features but does not
explicitly mention
cooking or food ther-
mometers.

Memory
cards

new ssk usb 2.0 card reader for
ms, xd, cf, mmc, sd, microsd,
m2 card. guarantee the quality
of products|||delivery time 20-
30 days|||if you have any ques-
tions, please feel free to con-
tact us

This product contains key-
words like "64gb", "mi-
crosd", "memory card",
and mentions it is for a
Samsung tablet. Based on
the SOP, this satisfies the
description of a Memory
Card.

Apple
laptops

letter h laptop carrying
bag sleeve,neoprene sleeve
case/ancient jaded wooden
h symbol from alphabet
uppercase scratched worn
design print decorative/for
apple macbook air samsung
google acer hp...

This product mentions
Apple Macbook Air and
includes specifications
like processor speed
and graphics that match
the SOP criteria for Apple
Laptops.

Table 4: Examples of bad reasons that ReScorer detects. For
brevity we show the class names in place of the full class
descriptions and truncate long product features at the item
name. Hallucinations are shown in bold. Note that “SOP” is
synonymous with “class description.”

4.4 Why can’t we just use ROSCOE?
There are two reasons behind our decision to put a supervised
fine-tuning layer on top of ROSCOE metrics instead of using them
directly. The first is simply the issue of deriving a decision from
multiple metrics. For example, how should we decide which of
two reasons is better when reason 𝐴 scores (0.9, 0.1) and reason
𝐵 scores (0.7, 0.7)? Two obvious approaches are to pick one di-
mension/metric or to average across multiple dimensions. But we
showed that these two strategies perform worse than ReScorer
(Table 2).

The second issue is that the ROSCOE metrics are sometimes
too general-purpose for specific problem domains. In some applica-
tions good reasons can have score lower in some metrics than bad
reasons. For example, repetition_word and repetition_step
measure the repetitiveness of a text. Usually it is bad for text to
be too repetitive, but in our classification use-case, it is sometimes
desirable. The following reason was assigned low repetition metrics
despite being satisfactory:

This product does not mention a glue gun, only glue
bars. The SOP defines Glue Guns as devices that dispense
hot melt glue, while this item only includes glue bars.

Similarly, we found that some good reasons had low grammar_step
and grammar_step_max metrics because they quoted product de-
tails or class descriptions, which were themselves grammatically
incorrect. These examples show the need for an extra step on top
of ROSCOE to align and aggregate the metrics for the application
at hand.

5 CONCLUSION
We explored the evaluation of LLM generated explanations along-
side classification decisions. Using a e-commerce product classifica-
tion dataset, we assessed two reasoning evaluation strategies: one
using an LLM-based scorer and the other using ROSCOE metrics.
Our analysis highlighted the computational intensity of LLM-based
approaches and the difficulties in aligning ROSCOE metrics with
human judgment. Consequently, we proposed ReScorer, an exten-
sion to the ROSCOE framework, achieving a 7% improvement over
LLM-based scoring and a 59% improvement over ROSCOE, while re-
ducing computational costs by 89% compared to LLM-based scoring.
These findings emphasize the importance of efficient evaluation
techniques and highlight ReScorer’s potential to enhance the relia-
bility of language model predictions in critical applications.
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A RESCORER HYPERPARAMETER
OPTIMIZATION

When training ReScorer, we used the scikit-learn logistic regres-
sion implementation and randomized 3-fold cross-validation search
over the following hyperparameters with random state 42 and 128
iterations:

"penalty": [None, "l1", "l2"],
"C": [1e-3, 1e-1, 5e-1, 1, 5, 10, 100],
"solver": ["liblinear"],
"tol": [1e-5, 5e-5, 1e-4, 5e-4, 1e-3],
"class_weight": [None, "balanced"],
"max_iter": [100, 200, 500]

B LIST OF ROSCOE METRICS
ROSCOE [13] semantic alignment metrics is the reasoning align-
ment vector from the 𝑁 -step hypothesis ℎ (LLM response) to the
source 𝑠 (task description + product details) of length 𝑇 :

𝑟 -𝑎𝑙𝑖𝑔𝑛(ℎ → 𝑠) = {𝛼1, 𝛼2, . . . , 𝛼𝑁 },
where each alignment value

𝛼𝑖 = 𝑟 -𝑎𝑙𝑖𝑔𝑛(ℎ𝑖 → 𝑠) = 1
2

[
1 + 𝑇max

𝑗=1

(
cos(ℎ𝑖 , 𝑠 𝑗 )

) ]
∈ [0, 1]

is the normalized cosine similarity between the hypothesis step and
the most similar sentence in a context. It explicitly measures the
grounding of the step-wise reasoning with respect to the source
text. The ROSCOE metrics are summarized in Table 5

C ANNOTATION GUIDELINES
Following are the annotation guidelines provided to human review-
ers for evaluating reasoning output from LLM:

• Provide score 1, 2 or 3 depending on quality of reason in
<task description, product features, task label,
reason>

• A low score of 1 should be given when there are outright
hallucinations, such as task asks for bicycles or scooters,
product is a scooter, but reason provided is that product is a
bicycle.

• A medium score of 2 should be given when the reason is cor-
rect but contains general knowledge not appears in product
attributes - this can happen since LLMs are pre-trained on
billions of internet-scale data and hence could bring general
knowledge during reasoning.

• A high score of 3 is given when none of the above are true.
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Metric Description

Faithfulness-Step (ℎ → 𝑠) This step-level score is based on the alignment from the hypothesis steps to the source sentences,
and is calculated as the mean reasoning alignment score over the steps of reasoning (see illus-
tration in Appendix D, Figure 3): 1

𝑁

∑𝑁
𝑖=1 𝑟 -𝑎𝑙𝑖𝑔𝑛 (ℎ𝑖 → 𝑠 ) . Faithfulness measures if the model

misinterpreted the problem statement, or the reasoning chain is too vague, irrelevant, or misuses
information.

Faithfulness-Token (ℎ →
𝑠)

We extend step-level embeddings of the Faithfulness-Step by measuring similarities between the
token embeddings: 1

𝑁 +𝑀
∑𝑁

𝑖=1 [𝑟 -𝑎𝑙𝑖𝑔𝑛 (ℎ𝑖 → 𝑠 ) + ∑𝑀𝑖
𝑗=1 𝑟 -𝑎𝑙𝑖𝑔𝑛token (ℎ𝑖,𝑗 → 𝑠 ) ], as shown in

App. D, Fig. 3.𝑀𝑖 is the number of tokens in step ℎ𝑖 ,𝑀 =
∑𝑁

𝑖=1𝑀𝑖 is the total number of tokens in
the reasoning chain, ℎ𝑖,𝑗 is the 𝑗 th token in the 𝑖th step, and 𝑟 -𝑎𝑙𝑖𝑔𝑛token is the alignment vector
from tokens in step ℎ𝑖 to all tokens in 𝑠 .

Informativeness-Step
(Info-Step) (ℎ ↔ 𝑠)

Measures how well information present in the source is used in the reasoning steps:[ 1
𝑇

∑𝑇
𝑡=1 𝑟 -𝑎𝑙𝑖𝑔𝑛 (𝑠𝑡 → ℎ) + 1

𝑁

∑𝑁
𝑖=1 𝑟 -𝑎𝑙𝑖𝑔𝑛 (ℎ𝑖 → 𝑠 )

]
/2. Info-step gives a higher score to rea-

soning steps that are well-grounded with respect to the source, and identifies the degree of
information from source that is covered by the generated hypothesis. A lower Info-Step score
corresponds to the reasoning steps that are not related to the source sentences or have missed
information provided in the context.

Repetition-Token (ℎ𝑖 →
ℎ 𝑗 )

To identify repeated, or paraphrased steps, we look at the token alignment scores between all steps
in the hypothesis chain: 1 − max𝑖=2..𝑁 max𝑗=1..𝑖−1

[
1
𝑀𝑖

∑𝑀𝑖

𝑙=1 𝑟 -𝑎𝑙𝑖𝑔𝑛token (ℎ𝑖,𝑙 → ℎ 𝑗 )
]
. For each

pair of sentences, we look at the mean token alignment, and find those sentences that maximize
this alignment score. In other words, Repetition-Token will punish chains where there are at least
two steps with high overlap in token embeddings.

Informativeness-Chain
(Info-Chain) (ℎ → 𝑠)

Similar to Info-Step, this metric quantifies the degree of agreement between the hypothesis chain
and the source and is calculated as [1+cos(ℎ, 𝑠 ) ]/2. We embed reasoning chain and source context
as a whole, as opposed to using step-wise embeddings.

Repetition-Step (ℎ𝑖 ↔ ℎ 𝑗 ) Measures repetition-related errors on the step level by checking if it paraphrases information
already mentioned in the previous steps: (1 − max𝑖=2..𝑁 max𝑗=1..𝑖−1 [cos(ℎ𝑖 , ℎ 𝑗 ) ] )/2. Unlike
Repetition-Token, which is orderless and compares individual tokens in pairs of steps, Repetition-
Step considers step embeddings similarity and is more robust to changing contexts.

Semantic Coverage-Chain
(𝑟 ↔ ℎ)

Reflects the overall degree of similarity between the reference and hypothesis chains, comparing
reference and hypothesis embeddings as a whole: [1 + cos(𝑟, ℎ) ]/2.

Self-Consistency (ℎ𝑖 ↔
ℎ 𝑗 )

Measures logical entailment errors within the reasoning steps: 1−max𝑖=2..𝑁 max𝑗<𝑖 𝑝contr (ℎ𝑖 , ℎ 𝑗 ) .
This metric will punish chains where there is a pair of steps that are likely to contradict each
other.

Source-Consistency (ℎ ↔
𝑠)

Measures logical entailment errors between any generated reasoning ℎ and the source context
𝑠 : 1 − max𝑖=1..𝑁 max𝑗=1..𝑇 𝑝contr (ℎ𝑖 , 𝑠 𝑗 ) . Specifically, for each reasoning step we measure the
probability that it contradicts any sentence in the context. We take the maximum probability of
contradiction over all steps, following the logic that a contradiction anywhere in the reasoning
chain signals a failure of the overall argument.

Perplexity-Chain (ℎ) Average perplexity of all tokens in the generated reasoning steps: 1/PPL(ℎ) . The context used to
score each token is the previous tokens in the current and all previous steps. Steps are joined with
a space character. To keep the range and orientation consistent with the other scores, we invert
the perplexity.

Perplexity-Step (ℎ𝑖 ) Average perplexity of all tokens in the generated reasoning steps, where the context used to score
each token is only the previous tokens within the current step: 1/[ (1/𝑁 ) ∑𝑖=0 PPL(ℎ𝑖 ) ]. To keep
the range and orientation consistent with the other scores, we invert the perplexity.

Grammar (ℎ𝑖 ) Probability of grammatical acceptability of each step, averaged over all steps:
(1/𝑁 ) ∑𝑖=0 𝑝gram (ℎ𝑖 ) .

Table 5: Description of ROSCOE metrics
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