
Label with Confidence: Effective Confidence Calibration and
Ensembles in LLM-Powered Classification

Karen Hovsepian

Amazon Web Services

Seattle, Washington, USA

khhovsep@amazon.com

Dantong Liu

Amazon

Sunnyvale, California, USA

lidanton@amazon.com

Sugumar Murugesan

Amazon

Sunnyvale, California, USA

musuguma@amazon.com

ABSTRACT
Large Language Models (LLMs) have been employed as crowd-

sourced annotators to alleviate the burden of human labeling. How-

ever, the broader adoption of LLM-based automated labeling sys-

tems encounters two main challenges: 1) LLMs are prone to pro-

ducing unexpected and unreliable predictions, and 2) no single

LLM excels at all labeling tasks. To address these challenges, we

first develop fast and effective logit-based confidence score calibra-

tion pipelines, aiming to leverage calibrated LLM confidence score

to accurately estimate the LLM’s level of confidence. We propose

novel calibration error based sampling strategy to efficiently select

labeled data for calibration, leading to a reduction of calibration

error by 46%, compared with uncalibrated scores. Leveraging cali-

brated confidence scores, we then design a cost-aware cascading

LLM ensemble policy which achieves improved accuracy, while

reducing inference cost by more than 2 times compared with the

conventional weighted majority voting ensemble policy.

ACM Reference Format:
Karen Hovsepian, Dantong Liu, and Sugumar Murugesan. 2024. Label

with Confidence: Effective Confidence Calibration and Ensembles in LLM-

Powered Classification. In Proceedings of the first workshop on Generative AI
for E-Commerce 2024, October 25, 2024. ACM, New York, NY, USA, 8 pages.

1 INTRODUCTION
Large labeled datasets are essential for building deep neural net

based classification models. They are traditionally labor-intensive

and time-consuming to create.With the rapid growth of AI research,

Large Language Models (LLMs) are being enlisted as automated

subject matter experts, tasked with performing complex annotation

tasks, and alleviating the burden and cost of manual labeling [1,

2]. There are however two key challenges that undermine wider

adoption of LLM-based automated labeling systems in large-scale

production environments: 1) LLMs have been known to generate

poorly calibrated outputs, resulting in unexpected and unreliable

predictions, and 2) there is no single LLM, including GPT4 [3] and

Claude Opus [4], that is adept at all labeling tasks.

Undertaking the first challenge requires precise calibration of

prediction confidence scores, and there has been significant re-

search on this topic in the past several years [5–8]. We contribute

to this body of research by developing a fast and effective logit-

based confidence score calibration pipeline, tailored to causal and

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

Genaiecom ’24, October 25, 2024, Boise, ID
© 2024 Copyright held by the owner/author(s).

Figure 1: End-to-end view of our LLM confidence calibration and
ensemble policy training pipeline.

non-causal autoregressive LMs and classification tasks. We propose

several novel strategies for selecting labeled examples used for fit-

ting calibration parameters, aiming to reduce the calibration error

with the smallest number of labeled examples.

Following the well-documented successes of conventional ML

classification/regression ensembles [9], we could address the sec-

ond challenge by deploying LLM ensembles as automated labelers.

Unfortunately, unlike conventional ML ensembles, deploying LLM

ensembles at scale is financially prohibitive in most situations due

to high costs associated with LLM inference. With this in mind, we

develop a novel algorithm for constructing cascading LLM ensem-

ble policies, which leverage calibrated confidence scores to decide,

on a per-input basis, when we can make do with fewer and cheaper

models without sacrificing accuracy, and when we need to enlist

additional costlier models to ensure correct prediction.

Novel research contributions of our work include:

• Novel “surrogate-error” based label-efficient strategies for

sampling in-task labeled examples for learning confidence

score calibration parameters; our experimental findings show

that these strategies lead to 10% improvement in calibration

accuracy over standard labeled example selection strategies

and 46% improvement over uncalibrated scores.

• A novel algorithm for optimizing cascading LLM ensemble

policies that exploit all opportunities to avoid using costly

LLMs, while attempting to maximize the prediction accu-

racy. Our results show that the proposed algorithm leads

to policies that achieve highest accuracy among all tested

ensemble and non-ensemble policies, while reducing the in-

ference cost by more than 2X compared with conventional

majority voting ensembles.

• To the best of our knowledge, ours is the first work that con-

tains end-end experiments on confidence score derivation,

calibration, and utilization in LLM ensembles. These exper-

iments enable us to empirically validate the downstream

business impact of enhancing confidence score calibration

in production systems.

Practical contributions and business impact of our work include:

Genaiecom ’24, October 25, 2024, Boise, ID Karen Hovsepian, Dantong Liu, and Sugumar Murugesan

• Implementation of configurable python modules for deriv-

ing, calibrating, and evaluating confidence scores for any

causal and non-causal autoregressive LM (available via a

huggingface interface and BedRock) in classification tasks.

• Implementation of our cascading LLM ensemble policy train-

ing and inference algorithms, which can be applied on any

classification tasks and any choices of LLMs.

• Experimentally-derived best-practices recommendations for

calibration and efficient LLM ensembling; these recommen-

dations come at a time of rapid adoption of GenAI and LLM

technologies across the e-commerce sector, and could have

significant force-multiplier effect on using LLMs to launch

new products and services.

2 CONFIDENCE SCORE CALIBRATION
PIPELINE

2.1 Deriving and Calibrating Confidence Scores
A simple yet effective method for generating confidence scores for

an autoregresive LM in discrete labeling tasks is to use token-level

logits of the output tokens. Prior to computing the confidence scores,

we assume that we have the following information: 1) answer 𝑎

given by the LLM; 2) unscaled activations (a.k.a. logits) x ∈ R𝐷×𝑇

in the last layer of the LLM, over every token in the vocabulary and

at each position in the LLM’s output (𝐷 is the size of vocabulary and

𝑇 is output sequence length); 3) set of candidate answers/classes 𝐶 ;

and 4) matching token sets M, where each set corresponds to one

of the candidate answers. Derivation of the calibrated confidence

scores uses the following four steps.

Step 1: Logit Aggregation: 𝑥𝑐 = max𝑖∈M𝑐 , 𝑗=1...𝑇 𝑥𝑖, 𝑗
For every class 𝑐 ∈ 𝐶 , take the max value of the logits across all

matching tokens and across all positions of the output sequence.

This results in a single logit value for each class. In the case of

binary classification where the candidate classes are yes or no, we
get two logits, one for yes and the other one for no.

Step 2: Uncalibrated Scaling: z = softmax(x̃)
Scale the logits by computing the softmax over the logits of the

candidate classes.

Step 3: Calibrated Scaling: z = softmax(x̃;𝜃)
To calibrate the scaling step, we endow the softmax function with

learnable parameters. We utilize likelihood maximization with a

dev-set of logit-label pairs to learn the parameters. We consider

two parameterization variants: a) Softmax Vector Scaling [SV],
softmax(A · x̃ + B); and b) Softmax Temperature Scaling [ST],
softmax(𝛼 x̃). While there are other logit scaling and calibration

algorithms, such as Isotonic regression [10] and sigmoid scaling

[11], softmax scaling has been showcased as a best-in-class logit

calibration strategy in several papers on neural network calibration,

such as [6].

Step 4: Prediction Score Selection: 𝑠 = 𝑧𝑎
Conditioned on the LLM’s predicted answer, 𝑎, we keep the corre-

sponding scaled logit. For example, in the case of binary classifi-

cation, if the LLM predicts yes, we keep the scaled logit for yes,
otherwise the score for no.

2.2 Learning Calibration Parameters
To learn the parameters of our softmax scaling functions (Step 3

in Section 2.1), we must collect a dev-set of labeled examples. We

envision two sources of such examples: out-of-task or auxiliary

labeled data, and in-task labeled data, recognizing that labeled data

for the target tasks may not always be accessible. In both cases, we

strive to maximize the calibration accuracy within the budget of

the dev-set size.

2.2.1 Out-of-task Labeled Example Setting. In a setting without

any labeled examples available from the target task, we can use

labeled data from other tasks. For reference, in our product classi-

fication use-case, we consider each classification definition (such

as ’classify office products’) as a distinct task. In this setting, we

consider and compare two out-of-task example selection strategies:

a) selecting all out-of-task labeled examples [ALL-OOT]; and b)

selecting only examples from tasks that are semantically similar to

the target task [SIM-OOT]. The motivation for SIM-OOT strategy

is that it may be preferable to fit the calibrator on tasks semantically

related to the target task, rather than all auxiliary tasks, which may

include unrelated ones. To implement SIM-OOT, we first cluster all

auxiliary labeled examples using semantic text representation (we

use sentence-T5-xlarge [12]). Then, we learn the parameters of the

target task softmax scaler using only the auxiliary tasks belonging

to the cluster that also contains the target task.

2.2.2 In-task Labeled Example Setting. In settings where we do

have some in-task labeled examples, we can sample a portion to

learn the parameters of the softmax scaler. However, since all such

labeled examples are ineligible for evaluation or further fine-tuning,

we note the importance of maximizing label efficiency. We observe

that the logit distribution is often highly skewed, and hypothesize

that, because of this, default uniform sampling may not produce

enough logits and labels for sections of the logit distribution that

need calibration the most.

With this in mind, in addition to Uniform [U] sampling we intro-

duce two novel ‘surrogate-based’ sampling strategies: i) stratification-

by-error [SE]: stratified sampling with partitions of values of ‘sur-

rogate’ calibration error, defined as the absolute difference between

the uncalibrated score and the top-performing out-of-task calibra-

tion score
1
, and ii) importance-sampling-by-error [IE]: importance

sampling using an importance distribution with mass proportional

to the ‘surrogate’ calibration error, defined identically as for SE.

The motivation behind these sampling strategies is that we can use

the top-performing out-of-task calibrated scores, which we view as

‘surrogates’ of the actual unknown precision, to prioritize sampling

from under-performing uncalibrated score bins.

3 COST-SAVING CASCADING ENSEMBLE
POLICY

Calibrated confidence scores enable effective LLM ensembles, since

the confidence scores are now comparable across diverse LLMs.

Such LLM ensemble policies rely on two key notions: 1) no one

model is an expert on all possible tasks, or even on all possible

questions within the same task, and 2) different models can have

different and complementary specializations. In this section, we

1
We found it experimentally to be SIM-OOT with Softmax Temp Scaling

Label with Confidence: Effective Confidence Calibration and Ensembles in LLM-Powered Classification Genaiecom ’24, October 25, 2024, Boise, ID

Figure 2: Illustration of two scenarios envisioned by the cascading
ensemble policy. In the first scenario, after mapping the confidence
score for LLM #1’s response for some input prompt [green point] to
a bin [green horizontal band], the policy decides LLM #1’s answer is
good enough. In the second scenario [red point], the policy decides
that, based on the LLM #1’s confidence bin [light-blue horizontal
band], it is better to use two LLMs. After mapping LLM #2’s confi-
dence score to a bin [red rectangle], nested in LLM #1’s confidence
bin, the policy decides that a weightedmajority voting strategy using
both LLMs’ answers is good enough.

present two policies that leverage confidence scores: 1) baseline

weighted majority voting policy that requires predictions by all

LLMs, and 2) our novel cascading ensemble policy that leverages

confidence scores to know when we can make accurate predictions

using cheaper models versus when we must use the costlier ones.

Our baseline for benchmarking the performance and cost of our

cascading ensemble policy is a weighted majority voting policy

[13] which gets model outputs, and associated confidence scores,

from all LLMs, and applies the following equation. We assume there

are 𝐾 LLMs in our ensemble, with each one outputting answer 𝑎𝑘 ,

and having an associated confidence score 𝑠𝑘 . The formula for the

weighted majority vote is:

𝑎 = argmax

𝑐∈𝐶

∑︁
𝑘∈𝐾

𝑠𝑘1[𝑎𝑘 = 𝑐], (1)

where 𝐶 is the set of possible classes for a classification problem.

3.1 Cascading Ensemble Policy Training and
Inference

There are two key shortcomings of the majority voting policy: 1)

requires inference on all LLMs, which can be cost prohibitive, and

2) may not be the optimal strategy, in general. To address these

shortcomings, we propose a cost-aware cascading ensemble policy.

The cascading approach allows the policy to be judicious about

the use of LLMs in the ensemble. Rather than getting answers

and confidence scores from all LLMs in parallel, our policy runs

inferences on LLMs in sequence, from the cheapest to the costliest.

Consider the motivating example illustrated in Figure 2. Suppose

that the best answer strategy for some input question is to use the

cheapest LLM’s answer, and all we need to recognize this is the

cheapest LLM’s confidence score. Then, there is no need to use

the confidence scores of the other costlier LLMs in the ensemble.

Continuing with this example, if, however, the cheapest LLM’s

confidence score does not inspire much trust, then we may decide

to get an answer, and an associated confidence score, from another

LLM in the ensemble. We will then use both confidence scores

Figure 3: Illustration of the cascading policy training algorithm.

to decide if a “good” answer can be inferred from the first two

LLMs’ answers, or if, in fact, we may need three or more additional

predictions from other LLMs.

To implement this logic in an algorithm, we simplify the problem

of mapping real valued confidence scores to discrete decisions by

adopting a binning approach. We map each score to a categori-

cal bin index, corresponding to mutually exclusive bins. Bins are

parameterized by their edges, which are defined a-priori. The se-

quential nature of LLM inferences in the cascade means that each

LLM’s score is binned separately, with its bin index appended to

the previous bin indices. After 𝑘 LLM predictions, the system will

generate a vector of 𝑘 bin indices. This approach allows us to im-

plement the policy’s decisions as a simple key-value lookup, with

vectors of bin indices as keys, and decisions as values. The trained

policy will have a decision for every unique vector of bin indices.

Figure 2 contains an illustration of this algorithm using example

bins. Algorithm 2 in the appendix includes a formal pseudo-code

of our cascading ensemble algorithm.

Figure 3 contains a high-level illustration of the cascading policy

training algorithm. We also include the formal pseudo-code in

the appendix, in Algorithm 1. The algorithm uses a training set

of (score, label) pairs, which can be sourced from out-of-task or

in-task datasets [same as for training calibration parameters]. As

the illustration shows, the algorithm proceeds in the reverse order,

from the full ensemble of K LLMs down to a single LLM ensemble.

Furthermore, the figure highlights the grouping of confidence scores

into nested bins, defined by the a-priori computed bin-edges. These

bins also correspond to nested partitions of the training set. At step

k, corresponding to an ensemble of k LLMs, the algorithm iterates

over all partitions. Consider the purple partition at step k. The

algorithm iterates over a library of ensemble aggregation functions

2
, and computes a reward value for each

3
. The algorithm records

that the max reward is 900 and the corresponding aggregation

function is Majority Vote (MajVote). In the previous iteration of

the policy training algorithm – corresponding to 𝑘 + 1 LLMs – we

had similarly computed max rewards for all partitions, including

the partitions nested in the purple partition. This allows us to

compare the max k-LLM reward 𝜇𝑘 for the purple partition to the

max (k+1)-LLM reward for the purple partition, defined as the sum

of max (k+1)-LLM rewards over the sub-partitions. As the example

2
Our algorithm supports standard heuristic aggregation functions, such as Majority

Voting and Weighted Majority Voting, but one could include other more advanced

methods, backed by trained ML models.

3
We define the reward as the number of correct predictions, i.e. hits.

Genaiecom ’24, October 25, 2024, Boise, ID Karen Hovsepian, Dantong Liu, and Sugumar Murugesan

illustrates, both values are 900, which suggests that there is no

value add from using k+1 LLMs and that the most judicious yet

uncompromising policy decision is to exit the cascade with the

recommended Majority Voting aggregation function. The diagram

also illustrates a contrasting example – orange partition at step

k – where the max k-LLM reward of 500 is lower than the max

(k+1)-LLM reward of 700, which forces the policy to recommend

going down the cascade to k+1 LLMs.

As we previously stated, training and inference using the cas-

cading ensemble policy requires a-priori defined bin edges for each

LLM’s scores. Optimizing these bin edges must be done in an outer

optimization routine. We experiment with a simple application

of Bayesian Optimization, with conditional search spaces, using

popular ray[tune] [14] and Optuna [15] packages. Prior to op-

timization, we fix the number of bins of each LLM. Bin edges are

optimized over a large number of trials
4
on the objective of maxi-

mizing the F1 score, averaged over 10 repeated runs. During each

run, we call the policy training [Algorithm 1] and the inference

[Algorithm 2] in succession.

4 EXPERIMENTS
We fine-tuned Llama2-7B [16] and Flan-UL2 [17] models with 7.8M

internal product classification data for 8.5K product classification

tasks. We conduct LLM calibration experiments on 12 binary test

product classification datasets which are not used in finetuning

LLMs. Each test dataset has around 1000 products with classification

labels provided by human annotator. We utilized our fine-tuned

Llama2-7B and Flan-UL2 to do zero-shot classification on all the test

products. Fig. 4 in the Appendix shows the example prompt we used

for our finetuning Llama2-7B model for zero shot classification, and

the model is expected to output either yes or no. Table 4 in the

Appendix also includes more detailed information on the 12 test

product classification datasets.

4.1 Calibration Results
To assess how well the confidence scores align with the LLM-based

classification accuracy, we compute adaptive calibration error (ACE)

[7], which gives us a single score measuring the average discrep-

ancy between the LLM-based classification accuracy and the LLM

confidence scores. ACE close to 0 indicates good alignment and low

discrepancy between the confidence score and the accuracy. We

compute ACE using the following formula:

𝐴𝐶𝐸 (s, y) = 1

|𝐵 |
∑︁
𝑏∈𝐵

����s𝑏 − #[y𝑏 = “hit”]
#[𝑏]

���� (2)

In the above equation, we assume 𝐵 = {𝑏𝑖 } |𝐵 |𝑖=1
as the set of partitions

created by binning score s, with each partition defined as an array

of indices. As the equation shows, ACE is based on two per-bin

quantities: average score, s𝑏 , and ratio of hits,
#[y𝑏=“hit”]

#[𝑏] , where

hit means the model makes the right classification decision.

We present the calibration results for fine-tuned Llama2-7B

model. In our experiments, we calibrate each classification task

separately, in order to better align with the fact that a deployed

LLM will process each task in a silo, and the customer’s experience

4
We limited this to 400 trials.

Table 1: Aggregated ACE statistics [lower is better] of fine-tuned
Llama2-7B’s calibrated confidence scores, spanning the two imple-
mented out-of-task example selection strategies – ALL-OOT and
SIM-OOT – and our two softmax scaling variants – SV and ST. We
highlight the lowest ACE metrics in bold. Additionally, we mark
with an asterisk the solution with smallest upper quartile (i.e. Q3 or
75th percentile) value.

Scenario Method Mean±Std Median±IQR/2
Uncalibrated – 0.070±0.039 0.058±0.027

ALL-OOT

SV 0.089±0.032 0.087±0.022
ST 0.074±0.023 0.073±0.021

SIM-OOT

SV 0.102±0.073 0.087±0.037
ST 0.068±0.027 0.062±0.015*

Table 2: Aggregated ACE statistics of fine-tuned Llama2-7B’s cal-
ibrated confidence scores in the in-task setting for each of the 3
few-shot settings. For each few-shot setting, the table reports only
the best/lowest value of each ACE statistic, chosen from among all
combinations of our in-task example selection strategies – U, SE,
IE – and our two softmax scaling variants – SV and ST. In each
cell, we report the statistics in the following format: [value of
statistic]/[selection strategy]/[softmax scaling variant].
shots Mean±Std Median±IQR/2

0 0.068±0.027/SIM-OOT/ST 0.062±0.015/SIM-OOT/ST

20 0.063±0.023/IE/SV 0.059±0.020/U/SV
50 0.044±0.014/SE/SV 0.044±0.0095/SE/SV
100 0.038±0.015/IE/SV 0.036±0.011/IE/SV

depends on the system’s performance on that task alone. There-

fore, as we aggregate the ACE metrics across the 12 test tasks, we

calculate and report measures of spread, in addition to measures of

average. In particular, we report the following ACE statistics: mean,

standard deviation (std), median and interquartile range (IQR). To-

gether, these statistics allow us to assess the system’s reliability in

a more holistic manner.

4.1.1 Out-of-task Labeled Example Setting. Table 1 presents the

ACE statistics for the uncalibrated scores and calibrated scores in

the out-of-task regime, spanning our two softmax scaling versions

and the two example selection strategies. We observe that the best

calibration pipeline with out-of-task labeled examples uses the

semantically similar selection strategy [SIM-OOT] and softmax

temperature scaling [ST]. This pipeline has the lowest ACE IQR

and mean compared with other pipelines, and achieves comparable

median ACE with the baseline uncalibrated score. We highlight

the finding that while calibrated scores do not exhibit significant

improvement over uncalibrated scores in median and mean ACE,

there is a significant improvement in consistency of ACE values

across tasks, as evidenced by the much lower ACE IQR and Std for

calibrated scores compared to uncalibrated ones.

4.1.2 In-task Labeled Example Setting. We present ACE metrics of

experiments in in-task setting with fine-tuned Llama2-7B in Table 2.

There is an unsurprising improvement in ACE metrics with increas-

ing number of shots. The 100-shot calibration reduces the mean

of ACE by 44% compared with the 0-shot calibration (out-of-task

labeled example setting where no labeled example from target task

is used for calibration) and by 46% compared with uncalibrated

Label with Confidence: Effective Confidence Calibration and Ensembles in LLM-Powered Classification Genaiecom ’24, October 25, 2024, Boise, ID

Table 3: Comparisons (relative to Llama2-7B) of cost metrics and
maximum performance metrics across different ensemble policies;
cal. means calibrated confidence scores, and uncal. means uncali-
brated confidence scores. The highest accuracy metric numbers are
highlighted in bold.5

Policy F1 prec. recall cost
Llama2-7B alone F P R X

Weighted maj. vote (uncal.) 1.023F 1.002P 1.034R 7X

Weighted maj. vote (cal.)
𝑎

1.046F 1.012P 1.066R 7X

Cascading (uncal.)
𝑏

1.016F 0.998P 1.025R 1.9X

Cascading (cal.)
𝑐 1.058F 1.035P 1.068R 3.2X

𝑎: represents max performance across all calibration method

and sampling strategy combinations.

𝑏: represents max performance across all binning granularities.

𝑐: represents max performance across all calibration method,

sampling strategy, and binning granularity combinations.

scores. In each shot scenario, we report the best performing sam-

pling and calibration strategy combination in terms of different

ACE metrics in the table. We notice that Softmax Vector Scaling

calibration (SV) appears most, indicating SV is superior to the other

calibration methods. Similarly, we also observe that our proposed

stratification-by-error sampling (IE), and importance-sampling-by-

error sampling (SE) show up most of the time in the table, demon-

strating these strategies consistently outperform conventional uni-

form sampling (U) in most cases. Table 5 in the Appendix shows that

these strategies lead to 10% improvement in calibration accuracy

over conventional uniform sampling.

4.2 Cascading Ensemble Results
We now summarize the findings of experiments on ensembles on

the same 12 binary classification dataset described in section 4. Our

experiments also use the three LLMs mentioned earlier: our fine-

tuned Llama2-7B, fine-tuned Flan-UL2, and Claude-Instant model

[4]. We access the Claude-Instant via bedrock API and the confi-

dence score is not available. The majority voting policy requires

confidence scores from all candidate models. Inspired by [18], we

use our fine-tuned Llama2-7B as a verifier LLM and leverage its

logits to measure the confidence score of Claude-Instant model

output.

Table 3 shows various performance metrics (F1, precision, and re-

call) and inference costs across three policies: 1) trained a cost-aware

cascading ensemble policywith 3 LLMs using calibrated/uncalibrated

confidence score, 2) weighted majority voting ensemble with 3

LLMs using calibrated/uncalibrated confidence score, and 3) non-

ensemble policy with fine-tuned Llama2-7B alone.

During experiments with weighted majority voting and cas-

cading ensembles using calibrated confidence scores, we ran all

calibration method and sampling strategy combinations described

in sections 2.1 and 2.2.2. In the case of cascading ensemble policies,

we explored the performance across two binning granularities, i.e.

of confidence bins for each LLM: 5 and 10. Table 3 reports the top-

performing combinations. We provide more details and the winning

configurations in the appendix section 7.1.It shows that the cas-

cading ensemble policy with calibrated confidence scores not only

achieves the best performance among all the benchmarked poli-

cies, but also reduces inference cost by more than 2 times compared

with the majority voting policy, through significant reduction in the

number of more expensive inferences (i.e., Flan-UL2 and Claude).

We also observe that compared with uncalibrated confidence score,

using calibrated confidence scores improves F1 by 2% and 3.6%

for majority voting and cost-aware cascading ensemble policies,

respectively.

5 RELATEDWORK
LLM confidence score estimation: Existing literature on estimat-

ing LLM confidence score relies on 1) verbalized confidence that elic-

its the model to output confidence directly [19, 20], 2) consistency-

based methods that instruct the LLM to generate multiple answers

to a question and calculate the consistency of responses [8, 21], or

3) use of model output logits to estimate model confidence [18, 22].

Recent study [18] shows that model output logits are by far the

most accurate technique. Therefore, in this study, we focus on

leveraging token-level logits to estimate LLM confidence. Compar-

isons with LLM confidence estimation methods in the other two

aforementioned categories are beyond the scope of this work.

LLM confidence score calibration: Calibration in deep neural

networks, using logit-based confidence scores, has been an im-

portant and popular research problem in the past 10 years, with

such noteworthy papers as [6] and [7]. More recently, works like

[5, 23–25] have considered the problem of calibrating the outputs

of generative LLMs. We also direct the reader to read a, yet unpub-

lished, survey on calibration in LLMs [26].

LLM ensembles: Ensembling LLMs is an area that is gaining

popularity in recent times, given that different LLMs excel at dif-

ferent tasks [27–30]. Recent work [27] proposes LLM-BLENDER,

that jointly encodes pairs of LLM outputs using a cross-attention

encoder, thereby ranking LLMs for each input. While this directly

optimizes for classification accuracy, it incurs high cost of infer-

ence across all LLMs. Another work [28] employs a reward-guided

routing method to route queries to the best LLM. While this work

minimizes inference cost by querying only one LLM at a time, it

does not truly ensemble LLMs, which is potentially sub-optimal.

In contrast to these approaches, we adaptively query LLMs in a

sequence, and stop when we are confident of the response we re-

ceived, thereby striking a balance between cost and accuracy.

6 CONCLUSIONS AND FUTUREWORK
We developed token logit based confidence scores for the classi-

fication output from LLM. We proposed novel ‘surrogate error’

based sampling strategies to increase label efficiency, leading to a

reduction in calibration error by 46%, compared with uncalibrated

scores. Finally, we design a cost-saving cascading LLM ensemble

policy based on LLM confidence score which achieves competitive

performance, while reducing inference cost by more than 2 times

compared with the conventional majority voting ensemble.

Our work is applicable to any use case of LLMs for data anno-

tation. With more accurate LLM confidence estimation and cal-

ibration, we can filter out erroneous LLM labels based on LLM

confidence score to ensure annotation quality, and build more cost-

effective LLM ensembles. In the future, we plan to explore additional

variants of softmax scaling to improve calibration accuracy, and

expand the action-space of LLM ensemble to better trade-off speed

and accuracy.

Genaiecom ’24, October 25, 2024, Boise, ID Karen Hovsepian, Dantong Liu, and Sugumar Murugesan

REFERENCES
[1] Xingwei He, Zhenghao Lin, Yeyun Gong, A-Long Jin, Hang Zhang, Chen Lin,

Jian Jiao, Siu Ming Yiu, Nan Duan, and Weizhu Chen. Annollm: Making large

language models to be better crowdsourced annotators, 2023.

[2] Parikshit Bansal and Amit Sharma. Large language models as annotators: En-

hancing generalization of nlp models at minimal cost, 2023.

[3] OpenAI. Gpt-4 technical report, 2023.

[4] anthropic. Introducing the next generation of claude.

[5] Tony Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate

before use: Improving few-shot performance of language models. In International
Conference on Machine Learning, 2021.

[6] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of

modern neural networks. In Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, page 1321–1330. JMLR.org, 2017.

[7] Jeremy Nixon, Michael W. Dusenberry, Linchuan Zhang, Ghassen Jerfel, and

Dustin Tran. Measuring calibration in deep learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Work-
shops, June 2019.

[8] Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan

Hooi. Can llms express their uncertainty? an empirical evaluation of confidence

elicitation in llms, 2023.

[9] Ibomoiye Domor Mienye and Yanxia Sun. A survey of ensemble learning: Con-

cepts, algorithms, applications, and prospects. IEEE Access, 10:99129–99149,
2022.

[10] Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate

multiclass probability estimates. In Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’02, page

694–699, New York, NY, USA, 2002. Association for Computing Machinery.

[11] John Platt. Probabilistic outputs for support vector machines and comparisons

to regularized likelihood methods. Adv. Large Margin Classif., 10, 06 2000.
[12] Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith Hall, Daniel

Cer, and Yinfei Yang. Sentence-t5: Scalable sentence encoders from pre-trained

text-to-text models. In Smaranda Muresan, Preslav Nakov, and Aline Villavi-

cencio, editors, Findings of the Association for Computational Linguistics: ACL
2022, pages 1864–1874, Dublin, Ireland, May 2022. Association for Computational

Linguistics.

[13] N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Information
and Computation, 108(2):212–261, 1994.

[14] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez,

and Ion Stoica. Tune: A research platform for distributed model selection and

training. ArXiv, abs/1807.05118, 2018.
[15] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. Optuna: A next-generation hyperparameter optimization framework.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2019.

[16] etc Hugo Touvron. Llama 2: Open foundation and fine-tuned chat models, 2023.

[17] Google. google/flan-ul2. In https://huggingface.co/google/flan-ul2, 2023.
[18] Nihit Desai Dhruva Bansal. Labeling with confidence. In

https://www.refuel.ai/blog-posts/labeling-with-confidence, 2023.
[19] Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their

uncertainty in words, 2022.

[20] Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu

Yao, Chelsea Finn, and Christopher Manning. Just ask for calibration: Strategies

for eliciting calibrated confidence scores from language models fine-tuned with

human feedback. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pages 5433–5442, Singapore, December 2023. Association for Computational

Linguistics.

[21] Gwenyth Portillo Wightman, Alexandra Delucia, and Mark Dredze. Strength in

numbers: Estimating confidence of large language models by prompt agreement.

In Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing
(TrustNLP 2023), pages 326–362, Toronto, Canada, July 2023. Association for

Computational Linguistics.

[22] Vaishnavi Shrivastava, Percy Liang, and Ananya Kumar. Llamas know what gpts

don’t show: Surrogate models for confidence estimation, 2023.

[23] Chiwei Zhu, Benfeng Xu, Quan Wang, Yongdong Zhang, and Zhendong Mao. On

the calibration of large language models and alignment. In Houda Bouamor, Juan

Pino, and Kalika Bali, editors, Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 9778–9795, Singapore, December 2023. Association

for Computational Linguistics.

[24] Shrey Desai and Greg Durrett. Calibration of pre-trained transformers. In Bonnie

Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
295–302, Online, November 2020. Association for Computational Linguistics.

[25] Lingkai Kong, Haoming Jiang, Yuchen Zhuang, Jie Lyu, Tuo Zhao, and Chao

Zhang. Calibrated language model fine-tuning for in- and out-of-distribution

data. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1326–1340, Online, November 2020. Association for Computa-

tional Linguistics.

[26] Jiahui Geng, Fengyu Cai, Yuxia Wang, Heinz Koeppl, Preslav Nakov, and Iryna

Gurevych. A survey of confidence estimation and calibration in large language

models, 2024.

[27] Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large

language models with pairwise ranking and generative fusion, 2023.

[28] Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and

Jingren Zhou. Routing to the expert: Efficient reward-guided ensemble of large

language models, 2023.

[29] Mathieu Ravaut, Shafiq Joty, and Nancy Chen. SummaReranker: A multi-task

mixture-of-experts re-ranking framework for abstractive summarization. In

Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors, Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 4504–4524, Dublin, Ireland, May 2022. Association for

Computational Linguistics.

[30] Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik Kundu, Eric Xing, and

Mikhail Yurochkin. Fusing models with complementary expertise, 2023.

7 APPENDICES

Table 4: Details of the SOP-ASIN dataset, on which all experiments
in this paper were performed.

SOP Title # ASINs/prompts Match label
(yes/no)

Bicycle Stem,

Bicycle Crankset,

Bicycle Cassette,

Bicycle Fork,

Bicycle Chaining

1118 569/549

Books Hardcover/

Notebook Hardcover 693 397/296

Cotton Bath

and Kitchen Towels 1941 1119/822

Dried grains/Rice 938 560/378

Ebike Batteries,

Ebike Chargers,

Escooter Batteries,

Escooter Chargers

764 370/394

Foam Sheet 901 359/542

Non-Gas Fire Pit 2510 1242/1268

SIM cards 703 312/391

Saws/Cutters/Milling Tools 1486 751/735

Ties/Tie Clips 1547 682/865

Window Fittings 876 460/416

Total 14227

Label with Confidence: Effective Confidence Calibration and Ensembles in LLM-Powered Classification Genaiecom ’24, October 25, 2024, Boise, ID

Figure 4: Example LLM prompt for the Llama2-7B model.

Algorithm 1: Algorithm that trains the set of hierarchical

policies, which are used by Algorithm 2. The algorithm pro-

ceeds in reverse order, from the full ensemble of 𝐾 LLMs

back to an ensemble composed of only the first/cheapest

LLM. At each step 𝑘 ∈ {𝐾,𝐾 − 1, ..1}, it groups all labeled
training examples that have the same 𝑘-length sequences

of bin indices, that contain the confidence scores of LLMs

1..𝑘 . Within each such group, the algorithm picks the deci-

sion that maximizes some measure of average reward, e.g.

the hit-rate (a.k.a accuracy) calculated from the labels of

this group upon applying that decision. Among the possi-

ble decisions, all but one are distinct answer strategies,

each taking the first 𝑘 LLM answers, plus associated 𝑘

scores, and outputting a single answer. The last decision

is to go deeper in the cascade and involve more LLMs [re-

ferred to as 𝐺𝑜𝐷𝑒𝑒𝑝𝑒𝑟 in the algorithm]. The choices for

answer strategies are also defined a-priori. The previously-

described weighted majority voting strategy can be one

of these choices. The algorithm first maximizes the aver-

age reward over the choices of answer strategies. This is

compared with the maximum achievable reward with more

LLMs, which has already been computed in the previous

iteration 𝑘 + 1, using groups of samples with (𝑘 + 1)-length
bin indices that have the current 𝑘-length bin indices as

prefix. Based on this comparison, the optimal decision for

this group can be to go deeper in the cascade, or exit from

the cascade with the 𝑘-LLM answer strategy that maximizes

the average reward.

Input: D = {a𝑖 , b𝑖 , 𝑦𝑖 }𝑁𝑖=1 : training dataset of triplets of (multi-LLM answer-score pairs,

nested bins, and ground-truth answers) for a sample of 𝑁 training examples; see

Algorithm 2 for definitions of a and b.
{A𝑘 }𝐾𝑘=1 : see Algorithm 2

Output: {𝜋𝑘 }𝐾𝑘=1
for 𝑘 = 𝐾 to 1 do

forall b̃ ∈ B1 × B2 · · · B𝑘 do
forall ℎ ∈ A𝑘 do

𝜇 (ℎ) = ∑𝑁
𝑖=1

b(1:𝑘)
𝑖

=b̃

1[ℎ (a𝑖) = 𝑦𝑖]

𝜋𝑘

(̃
b
)
= argmaxℎ∈A𝑘 𝜇 (ℎ)

𝑚𝑘

(̃
b
)
= maxℎ∈A𝑘 𝜇 (ℎ)

if (𝑘 < 𝐾) and
(
𝑚𝑘

(̃
b
)
<
∑
𝑏∈B𝑘+1𝑚𝑘+1

(̃
b ∪ {𝑏}

))
then

𝜋𝑘

(̃
b
)
= 𝐺𝑜𝐷𝑒𝑒𝑝𝑒𝑟

𝑚𝑘

(̃
b
)
=
∑
𝑏∈B𝑘+1𝑚𝑘+1

(̃
b ∪ {𝑏}

)

Genaiecom ’24, October 25, 2024, Boise, ID Karen Hovsepian, Dantong Liu, and Sugumar Murugesan

Algorithm 2: Algorithm that applies cascading ensemble

policy on an arbitrary question, with access to a quorum of

LLMs.

Input: a = { (𝑎 (𝑘) , 𝑠 (𝑘)) }𝐾
𝑘=1

: array of prediction-confidence score pairs,

corresponding to each of the 𝐾 LLMs in the ensemble, ordered from cheapest to

costliest LLM.

{A𝑘 }𝐾𝑘=1 : 𝐾 collections of possible actions/answer strategies, where each A𝑘 is

a collection of answer strategies involving only the first 𝑘 LLMs. Each answer strategy is

a function that takes the answers provided by LLMs, and their scores, and outputs a

single final answer.

b = {𝑏 (𝑘) }𝐾
𝑘=1

: sequence of nested bin indices, where 𝑏𝑘 ∈ B𝑘 is the index of

the bin containing 𝑘th LLM’s confidence score, conditioned on the 𝑘 − 1 previous bins.

{𝜋𝑘 (b(1:𝑘)) }𝐾𝑘=1 : set of 𝐾 policies, one for each sequence of nested bins of

depth 𝑘 , where each 𝜋𝑘 : B1 × B2 · · · B𝑘 → A𝑘 ∪ {𝐺𝑜𝐷𝑒𝑒𝑝𝑒𝑟 } maps the

sequence of bins up to depth 𝑘 to an answer strategy involving the first 𝑘 LLMs or to a

call to go deeper in the cascade hierarchy and involve more LLMs.

Output: final prediction for the input question

for 𝑘 = 1 to 𝐾 do
ℎ = 𝜋𝑘 (b(1:𝑘))
if ℎ ≠ 𝐺𝑜𝐷𝑒𝑒𝑝𝑒𝑟 then

return ℎ
(
(𝑎 (1) , 𝑠 (1)), (𝑎 (2) , 𝑠 (2)), · · · , (𝑎 (𝑘) , 𝑠 (𝑘))

)

7.1 Details of experiments for reproducing
results in Table 3

The results in Table 3 are based on a labeled dataset that merges all

12 binary product classification tasks together.

To compute the results in row 3, i.e. weighted majority voting en-

semble policy with calibrated confidence scores, we applied formula

(1) across all confidence score calibration configurations, spanning

both calibration methods, SV/ST, and the three in-task example

sampling methods, U/SE/IE. Since no model training is needed for

this row, F1, precision, and recall were measured on the entire

labeled dataset. The maximum performance across all these con-

figurations, which is quoted in the table, is attained using Softmax

Vector Scaling (SV) with 100-shot in-task example sampling using

importance-sampling-by-error (IE).

For row 4 – cascading ensemble with uncalibrated confidence

scores – the configuration for each experiment consists of one of

two binning granularities: 5 or 10. Separately for each granularity,

we ran 400 trials of Bayesian Optimization of bin edges [for both

LLama2 and Flan-UL2 models]
6
using Optuna and Ray packages.

During each trial, we computed the computed the F1 score averaged

across 10 80%/20% train/test splits, with Algorithm 1 applied to train

segment, followed by applying Algorithm 2 to the test segment. The

results quoted in the table correspond to the binning granularity of

10, i.e. 10 Llama2 bins and 10 Flan-UL2 bins.

Finally, the experimental design for results of row 5 – cascading

ensemble with calibrated confidence scores – is identical to that

of row 4, but with an expanded configuration. Each configuration

consists of binning granularity, 5/10, calibration method, ST/SV,

and in-task example sampling method, U/SE/IE. As for row 4, for

each configuration, we perform outer Bayesian Optimization of bin

edges, using 400 trials, with each trial consisting of evaluating the

average F1 score of an optimized cascading ensemble policy. The

max performance and cost in row 5 was attained with the following

6
As an example, for binning granularity of 5, we would have 4 bin edges for Llama2

and 4 bin edges for Flan-UL2, for a total of 8 real-valued hyper-parameters.

configuration: binning granularity = 10, calibration method = SV,

sampling method = IE.

Label with Confidence: Effective Confidence Calibration and Ensembles in LLM-Powered Classification Genaiecom ’24, October 25, 2024, Boise, ID

Table 5: Full label-assisted results for Llama2-7B. Expanded In-task aggregated ACE statistics, spanning our three in-task sampling strategies –
Uniform [U], Stratification-by-error [SE], Importance-by-Error [IE] – and our two scaling variants – Softmax Vector Scaling [SV] and Softmax
Temp Scaling [ST] variants. Per-shot best results are underlined, whereas overall optimal metric values are highlighted in bold.

Shots Sampling
Strategy Method Mean Std Median IQR Upper

Quartile

10

U

SV 0.123 0.098 0.100 0.080 0.140

ST 0.103 0.056 0.086 0.054 0.113

SE

SV 0.098 0.045 0.095 0.023 0.107

ST 0.103 0.041 0.099 0.044 0.121

IE

SV 0.110 0.079 0.076 0.055 0.104

ST 0.104 0.047 0.099 0.047 0.122

20

U

SV 0.069 0.025 0.059 0.020 0.070

ST 0.078 0.023 0.072 0.033 0.089

SE

SV 0.072 0.026 0.078 0.029 0.093

ST 0.084 0.031 0.084 0.049 0.109

IE

SV 0.063 0.023 0.057 0.036 0.075

ST 0.080 0.018 0.078 0.022 0.089

50

U

SV 0.049 0.023 0.050 0.030 0.065

ST 0.067 0.033 0.067 0.052 0.093

SE

SV 0.044 0.014 0.044 0.019 0.054

ST 0.061 0.026 0.058 0.040 0.078

IE

SV 0.053 0.020 0.054 0.030 0.069

ST 0.063 0.022 0.053 0.025 0.066

100

U

SV 0.042 0.019 0.040 0.026 0.053

ST 0.058 0.029 0.053 0.033 0.069

SE

SV 0.041 0.014 0.044 0.024 0.056

ST 0.059 0.024 0.057 0.024 0.069

IE

SV 0.038 0.015 0.036 0.022 0.047
ST 0.060 0.026 0.052 0.024 0.065

	Abstract
	1 Introduction
	2 Confidence Score Calibration Pipeline
	2.1 Deriving and Calibrating Confidence Scores
	2.2 Learning Calibration Parameters

	3 Cost-Saving Cascading Ensemble Policy
	3.1 Cascading Ensemble Policy Training and Inference

	4 Experiments
	4.1 Calibration Results
	4.2 Cascading Ensemble Results

	5 Related Work
	6 Conclusions and Future Work
	References
	7 Appendices
	7.1 Details of experiments for reproducing results in Table 3

