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ABSTRACT
Existing zero-shot product attribute value (aspect) extraction aims
at using open-mining, graph, or large language models to predict
unseen product attribute values. These approaches rely on uni-
modal or multi-modal models, where the sellers should provide
detailed textual inputs (product descriptions) for the products. How-
ever, manually providing (typing) the product descriptions is time-
consuming and frustrating for the users. Thus, we propose a cross-
modal zero-shot attribute value generation framework (ViOC-AG)
based on CLIP, which only requires product images as the inputs.
In other words, users only need to take photos of the products they
want to sell to generate unseen attribute values. ViOC-AG follows
a text-only training process, where a task-customized text decoder
with a projection layer is trained with the frozen CLIP text encoder
to alleviate the modality gap and task disconnection. During the
zero-shot inference, product aspects are generated by the frozen
CLIP image encoder connected with the trained task-customized
text decoder. OCR tokens and outputs from a frozen prompt-based
LLM correct the decoded outputs for out-of-domain attribute val-
ues. Extensive experiments with ablation studies conducted on the
public dataset MAVE demonstrate that our proposed model signif-
icantly outperforms other fine-tuned vision-language models for
zero-shot attribute value generation.
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1 INTRODUCTION
Product attribute value (aspect) extraction aims at retrieving the
values of attributes from the product’s unstructured information
(e.g. title, description), to serve better product search and recom-
mendations for buyers. Existing uni-modal or multi-modal attribute
value extraction models require users to manually provide (type)
product descriptions, which is time-consuming and frustrating. In
addition, these approaches mainly focus on supervised learning,
weakly-supervised learning, and few-shot learning to train or fine-
tune language models for attribute value prediction [12, 35, 36].
These approaches need labeled data for training and can not be
extended to unseen attribute values for new products. To extract
unseen attribute values, open-mining models [18, 35], inductive

graph-based models [13], and multi-modal large language mod-
els [40, 41] try to generate potential attribute values from both
product descriptions and images.

Figure 1: An example of cross-modal aspect generation.
However, these approaches suffer from these limitations: (1) It’s

difficult for classification or graph-based prediction models to scale
to a large number of attribute values because the decision bound-
aries between classes become more complex and harder to learn,
and increase the computational complexity. (2) Traditional infor-
mation extraction models or the above multi-modal models need
the inputs for product textual descriptions from the sellers (see
Figure 1). It is challenging and time-consuming for the sellers to
manually type and provide the product descriptions. To address
the above limitations, we propose an optical character-enhanced
zero-shot cross-modal model (ViOC-AG) to generate attribute val-
ues, which ONLY need the product images as the inputs. In other
words, the seller only needs to take a photo of the product that he
wants to sell without manually providing the product with textual
descriptions, resulting in a better user experience.

There are two main challenges for zero-shot cross-modal as-
pect generation. The first challenge is the modality gap between
vision and language caused by cross-modal generation. Although
there exist many large generative image-to-text transformers (i.e.
GIT [30], BLIP [17], BLIP-2 [16]), they target at the image caption-
ing or visual question answering tasks. Our experiments in Sec. 4
show that simply fine-tuning these large vision language models
performs poorly on the product attribute value generation task.
This is because there is a task disconnection between language
modeling (used for image captioning) and aspect generation. Thus,
we take advantage of the pre-trained CLIP [25] ability to align vi-
sual and textual representations in a shared embedding space to
avoid the modality gap. To alleviate task disconnection, we train a
task-customized text decoder with a projection layer, which follows



Figure 2: The overview of our proposed ViOC-AG model. Only the projector and the text decoder are trainable.

a text-only training process. Specifically, we tend to transfer CLIP
textual description embeddings back into textual aspects by learn-
ing a task-customized decoder for the frozen CLIP text encoder
using only text. The second challenge is the out-of-domain aspects
caused by zero-shot generation. For zero-shot aspects, the model is
susceptible to generate aspects that are not actually present in the
input image but frequently appear during training (object halluci-
nation). Due to the characteristics of the product attribute value
generation task, some aspects (i.e. brand name, capacity, etc.) are
shown directly on the product. Thus, we correct the generated out-
puts from the trained task-customized text decoder with the OCR
tokens. For further final aspects correction, we generate potential
attribute value answers by designing prompt templates for pre-
trained visual question-answering LLMs. The effectiveness of each
module is shown independently in Sec. 4.2. Extensive experimen-
tal results on a public dataset MAVE [37] show that our proposed
model ViOC-AG significantly outperforms other existing cross-
modal large language models (LLMs) for zero-shot attribute value
generation. ViOC-AG achieves competitive results with generative
LLMs with textual product description inputs, demonstrating the
positive potential that users only need to take photos of the selling
products for aspect generation.

2 RELATEDWORKS
Existing works on product attribute value extraction mainly fo-
cus on supervised learning to train classification models [4, 6, 7],
QA-based models [3, 21, 28, 32] or large language models [1, 2, 9].
Recently, some works use few-shot learning [12, 36] and weakly
supervised learning [35, 39] to reduce the amount of labeled data for
training. However, these approaches still need labeled data formulti-
task training or iterative training. To extract unseen attribute values,
open-mining models [18, 35] extract (explicit) attribute values di-
rectly from text, and zero-shot models [13] predict new attribute
values by inductive link prediction of graphs. However, all these ap-
proaches can only extract attribute values from textual inputs. Some
multi-modal models use both the product image and title with the

description as the inputs to learn a better product representation for
attribute value extraction or generation [11, 22, 23, 31, 33, 40, 41].
Though performance is improved by fusing more semantic infor-
mation from multiple modalities, more input data is needed during
the training stage. To enable image-first interactions from sellers
and make it simple for the users, we propose a zero-shot cross-
modal model motivated by image captioning [10, 14, 29, 34, 38] for
attribute value generation, where only images are used as inputs.

3 METHODOLOGY
3.1 Problem Definition
Cross-modal attribute-value generation aims at automatically gen-
erating textual product attribute values from the product image.
Consider a dataset D ⊂ I × T where I is the image domain and
T is the text domain, and (𝐼𝑖 , 𝐴𝑖 ) forms a corresponding image-
aspect pair (i.e. 𝐴𝑖 ∈ T is attribute values from product 𝐼𝑖 ). It can
be formalized as a sequence generation problem given an input
image 𝐼 with a set of detected OCR tokens 𝑇 , the model needs to
infer the attribute values 𝐴 = [𝑎1, · · · , 𝑎𝑁 ]. The problem focuses
on searching 𝐴 by maximizing 𝑝 (𝐴|𝐼 ):

log𝑝 (𝐴|𝐼 ) = log
∏
𝑁

𝑝 (𝑎𝑁 |𝐼 ,𝑇 , 𝑎1:𝑛−1) (1)

where 𝑇 is the set of OCR tokens detected from the product image
𝐼 . The training process is typically accomplished in a supervised
manner by training on manually annotated datasets and optimizing
weights to converge to the optimal state. Therefore, it is necessary
to explore optical-characters-aware zero-shot methods for guiding
large-scale language models free of parameter optimization.

3.2 Zero-Shot Data Sampling and Pre-processing
For zero-shot attribute-value(aspect) generation, we follow [13] to
let 𝐴𝑆 = [𝑎𝑆1 , · · · , 𝑎

𝑆
𝑁
] and 𝐴𝑈 = [𝑎𝑈1 , · · · , 𝑎

𝑈
𝑁
] denote the seen as-

pects and unseen aspects, where𝐴𝑆 ∩𝐴𝑈 = ∅. Because one product
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may contain multiple aspects, We follow a generalized zero-shot set-
ting [24] to ensure that any product in the validation/testing set has
at least one aspect from 𝐴𝑈 . For data pre-processing, we first com-
bine the aspects that only have differences in uppercase/lowercase,
singular/plural forms, or similar meanings and drop the data that
we can not retrieve the corresponding images by the provided URLs
in MAVE [37]. We implement the zero-shot data sampling over 21
categories of MAVE independently so that the zero-shot training,
validation, and testing sets can still have similar data distributions
across various categories.

3.3 Overall Framework
We introduce the overview of ViOC-AG in Figure 2, which is a
transferable aspect generation framework based on CLIP [25] and
trained on a text-only corpus. Specifically, we train a language de-
coder to decode the CLIP text embedding of aspects with generated
text descriptions from a frozen image caption model. We make this
decoding to be similar to the original textual aspects𝐴. Namely, our
training objective is a reconstruction of the input text from CLIP
textual embedding. For zero-shot inference, we directly feed the
CLIP image embedding of a given product image 𝐼 into the trained
decoder to generate aspects that are corrected by detected optical
characters and values from the generated text description.

3.3.1 Text-only Training. Our goal is to train a transferable task-
customized language decoder with a projector. During the training
phase, we freeze all the parameters of the CLIP text encoder. We
only train the projector from scratch and fine-tune the decoder-only
language model (i.e. GPT-2) in predicting product attribute values.
We first concatenate the generated descriptions of the product
image via a frozen image caption model with the textual aspects
inputs sequentially to prevent model overfitting and improve the
generalization and robustness of the model. Next, we mapped the
textual embeddings to CLIP space by CLIP text encoder 𝐸∗

𝑇
. Then,

the projected text embedding is decoded back by a trainable decoder
𝐷𝑇 . The text-only training objective is thus to minimize:∑︁

𝐴∈T
L(𝐷𝑇 (𝑊 · 𝐸∗𝑇 (𝐴 ⊕ 𝑀∗ (𝐼 )) + 𝑏), 𝐴) (2)

where ∗ denotes a frozenmodel with parameters not updated during
training.𝑀∗ can be any frozen image caption model (i.e. BLIP-2),
and 𝐼 is the product image. The projector𝑊 (·) + 𝑏 is a learnable
linear layer for domain alignment and dimension adjustment. L
is an autoregressive cross-entropy loss for all tokens in 𝐴. The
trainable projection layer alleviates the modality gap connecting
the image domain with the text domain, and the task-customized
text decoder solves task disconnection.
3.3.2 Zero-shot Inference. After the decoder 𝐷𝑇 is trained, we
leverage it for zero-shot aspect generation inference. Given a test
product image 𝐼 , we first extract its visual embeddings via the frozen
CLIP image encoder 𝐸∗

𝐼
. We employ the trained projector and text

decoder 𝐷𝑇 to convert the visual embeddings into textual aspects:

𝐴𝐷 = 𝐷𝑇 (𝑊 · 𝐸∗𝐼 (𝐼 ) + 𝑏) (3)

where𝑊 (·) +𝑏 is the trained projector for modality gap alleviation.
To improve the zero-shot performance caused by the out-of-

domain attribute values, a fusion module is employed to correct

the outputs from the text decoder 𝐷𝑇 . We use information from
two major sources to correct the outputs from 𝐴𝐷 for the final
aspects: (1) the values generated by the frozen prompt-instructed
image caption model 𝐴𝑃 = LLM(𝐼 , 𝑃), where LLM can be any
frozen cross-modal model (i.e. BLIP-2, InstructBLIP, etc.) 1, and 𝑃
are the prompt templates (i.e. Question: What is the attribute of
the product? Answer:). The attribute is replaced with the collected
attribute names (i.e. type, brand, color, size, etc.) in the training set;
(2) the optical characters 𝑇 detected by the OCR module: 2

𝑇 = OCR(𝐼 ) = {𝑡 |𝑐𝑡 > 𝜏𝑐 } (4)

where 𝑐𝑡 is token confidence value, and 𝜏𝑐 is the confidence thresh-
old. In most cases, product attributes are from a known set (i.e.

Algorithm 1: Zero-shot Inference Correction
Input :Aspects 𝐴𝐷 , 𝐴𝑃 , OCR tokens𝑇 and distance threshold 𝜏𝑑
Output :Final Aspects 𝐴
for 𝑎𝐷 in 𝐴𝐷 do

if get_attribute(𝑎𝐷 ) ∈ get_attribute(𝐴𝑃 ) then
if cosine_similarity(get_value(𝑎𝐷 ), get_value(𝑎𝑃 )) > 𝜏𝑑
then

A.update(𝑎𝑃 )
else

A.update(𝑎𝑖 |𝑚𝑎𝑥 (cosine_similarity(𝑎𝐷 , 𝑎𝑃 | |𝑇 )))
else

A.update(𝑎𝑖 |𝑚𝑎𝑥 (cosine_similarity(𝑎𝐷 ,𝑇 )))

return 𝐴

type, color, brand, capacity, etc.), only the values (i.e. long wallet,
red, Chanel, 13oz, etc.) vary for different products and may include
zero-shot cases, such as a new brand. We first check whether the
attribute exists in the training set to decide whether the attribute is
a zero-shot case or not. When the attribute is not a zero-shot case,
we further compare the cosine similarity between𝐴𝐷 and𝐴𝑃 . If the
value is closer to 1, 𝐴𝑃 is used to correct 𝐴𝐷 for irrelevant tokens.
If they are quite different, we think it is a value zero-shot case,
where OCR tokens 𝑇 are used to further correct 𝐴𝐷 . For attribute
value zero-shot cases, only OCR tokens 𝑇 are used to correct 𝐴𝐷

because no relevant prompts are provided for the generated 𝐴𝑃 .
Details of the correction process are shown in Algorithm 1. The
correction process solves the hallucination problem and improves
the zero-shot performance on out-of-domain attribute values.

4 EXPERIMENTS

4.1 Experimental Setup
We evaluate our model over a public dataset MAVE, which is a large
e-commerce dataset derived from Amazon Review Dataset [37]. To
simulate the zero-shot situation, we reconstruct the dataset into
zero-shot learning settings followed by Sec. 3.2. The dataset statis-
tics are shown in Table 1, where aspects are attribute values. We
compare our model ViOC-AG with the following SoTA generative
large language models: (1) text-only models BART [15] and T5 [27],
(2) image-to-text models ViT-GPT [8, 26], GIT [30], LLaVA [20],
1We use BLIP-2 as the image caption model in our paper.
2https://github.com/JaidedAI/EasyOCR
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Table 1: Dataset Statistics.

Train Validation Test
Products 403005 94426 188267
Attributes 620 560 576
Aspects 44505 20148 33060

Table 2: Experimental results (%) of text-only models and
image-to-text models on the MAVE dataset.

80%Acc. Macro-F1 Micro-F1 ROUGE1
BART 79.32 13.24 19.54 60.59
T5 68.69 15.28 23.06 53.82
ViT-GPT 16.60 2.62 4.07 31.00
GIT 14.89 3.70 5.36 34.13
LLaVa 25.67 7.20 10.24 40.11
BLIP 33.13 8.92 12.42 38.56
InstructBLIP 40.00 12.54 17.05 44.20
BLIP-2 45.85 13.92 18.86 43.06
ViOC-AG (ours) 54.82 17.71 23.69 31.92

BLIP [17], BLIP-2 [16] and InstructBLIP [5]. For evaluation, we use
80%Accuracy (we assume it is correct when 80% of the generated
words are matched with the golden label for one aspect) to mea-
sure the generation accuracy. This is because the generative text
decoder may generate more words than expected and we do not
need a 100% accuracy rate, which means all generated tokens are
exactly correct with the ground truth. Besides, we use Micro F1
and Macro F1 to evaluate the retrieval performance, which is a bal-
ance of Precision and Recall 3. In addition, we use ROUGE1 [19] to
evaluate the generation quality as ROUGE focuses on recall, which
means how much the words in the ground truth appear in the can-
didate model outputs. Our model is implemented on PyTorch and
optimized with AdamW optimizer. The learning rate is 0.0005. The
batch size is 512. The cosine similarity threshold 𝜏𝑑 is 0.95, the OCR
token confidence 𝜏𝑐 is 0.5. The experiments are conducted on eight
Nvidia A100 GPUs with 80G GPU memory.

4.2 Results and Discussions

4.2.1 Main Results. The results of zero-shot attribute value predic-
tion are shown in Table 2. We observe that: (1) In general, text-only
models (BART and T5) show better performance than image-to-
text models. This is because there is no modality gap for text-only
models as they sacrifice the user experience that product text de-
scriptions are needed for the model inputs. Thus, our goal is to
build an image-to-text (cross-modal) model requiring only image
inputs (product photos), which can achieve at least a similar per-
formance to text-only models. (2) Although existing image-to-text
LLMs (i.e. GIT, BLIP, LLaVa) have the zero-shot ability in image
captioning, they perform poorly on product attribute value gener-
ation. We think that this is because there is a task disconnection

3We follow [40] to determine whether the generated answer is correct by checking
whether the generated answer contains the true answer.

Table 3: Results (%) over ten categories on MAVE dataset.

80%Acc. Macro-F1 Micro-F1 ROUGE
Industrial 34.51 10.64 15.12 24.65
Home Kitchen 42.25 11.76 16.19 23.56
Automotive 43.64 13.28 17.49 28.81
Musical 51.74 14.65 20.08 30.76
Sports 47.38 16.08 21.73 30.16
Pet 64.45 20.62 28.51 36.44
Toys 61.19 23.25 30.54 41.75
Grocery 66.22 24.77 32.44 44.07
Clothing 63.63 25.14 33.30 42.58
Software 85.71 46.23 55.95 67.66

Table 4: Ablation results over ViOC-AG components in the
zero-shot setting on MAVE dataset.

80%Acc. Macro-F1 Micro-F1 ROUGE
w/o 𝐷𝑇 38.34 12.23 16.71 22.47
w/o𝑀∗ 33.94 9.07 12.42 18.41
w/o prompts 49.63 15.71 21.07 27.36
w/o OCR 52.85 16.68 22.43 30.23
ViOC-AG (All) 54.82 17.71 23.69 31.92

between the image captioning task and the attribute value genera-
tion task. Simply fine-tuning the image-to-text LLMs may improve
the image caption task. However, task-oriented information (i.e.
task-customized decoder, OCR from the product, etc.) is also impor-
tant for product attribute value generation tasks. (3) Our proposed
model achieves the best Macro and Micro F1 scores among all text-
only and image-to-text models, but it has a lower accuracy and
ROUGE value compared with text-only models. We conjecture that
this is because the trained task-customized text decoder may gen-
erate some non-relevant tokens, which reduces the percentage of
the accurate tokens among all generated outputs, resulting in a low
ROUGE and accuracy. More effective post-processing techniques
can be studied in future work to remove the non-relevant tokens.

We also conduct experiments across different categories ofMAVE.
Table 3 reports the selected categories (the worst 5 and best 5 cat-
egories). From Table 3, we observe that performance varies for
different categories. Some categories (i.e. software, clothing, gro-
cery) can achieve better performance because the products in these
categories have optical characters shown on the surface of the prod-
uct and different products have distinct patterns. Some categories
(i.e. industrial, home kitchen, etc.) perform poorly because the pat-
terns and features of the product images are quite similar and hard
to distinct. For future work, a category-oriented training process
can be explored to train category-related text decoders separately,
where the OCR tokens, decoder outputs, and prompt answers can
have different weights based on different categories.

4.2.2 Ablation Study. To verify the effectiveness of each compo-
nent in ViOC-AG, we conduct the ablation study in Table 4. We
observe: (1) The task-customized decoder and the frozen LLM used
in the training phase play important roles in ViOC-AG as the per-
formance drops drastically when removing these components. We
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Figure 3: Demonstrations of ViOC-AG for product attribute value generation across eight different categories.

conjecture that it is because a pre-trained text decoder is usually
used to generate long and diverse output text descriptions. How-
ever, our attribute value generation task is quite different where the
generated outputs are short phrases with specific formats. In other
words, there is no need for polishing the word (adding diversity) but
correcting the phrase in the generation process. The outputs from
the frozen LLM added to the original aspects inputs increase input
data diversity, alleviating bias and overfitting for the trained text
decoder. Thus, training a task-customized decoder with diverse in-
puts is essential. (2) Fusing answers from the frozen prompt-based
LLM and OCR systems to correct the final generated aspects is
useful for ViOC-AG, which is consistent with our hypothesis that
some attribute values (i.e. brand name, capacity, etc.) may appear
on the product packaging. To further improve the performance on
out-of-domain aspect generation, a better customized OCR system,
and diverse prompt templates can be explored in future work.

4.2.3 Case Study. Figure 3 shows the case study of our proposed
model ViOC-AG on product attribute value generation across eight
different categories. We observe that: (1) In general, most of the
attribute values can be generated from the trained task-customized
text decoder. There are some cases in which the trained decoder
may not generate correct attribute values. For example, in the
videogames case, the decoder generates ‘gaming mouse’ for the
attribute of the brand. We conjecture that this is probably because
of the data distribution and features of the training data. There are
limited data (product) samples with the attribute value of ‘brand:
corsair’ whereas there are lots of gaming mouse products in the
training data. This issue is solved by our correction stage using OCR
characters and answers from the image caption model introduced in
Sec. 3.3.2. (2) OCR correction performs very differently among dif-
ferent categories. For the videogames case above, OCR can correct

the brand name because ‘corsair’ is shown on the mouse. However,
characters seldom appear for some categories such as TOOLS. In
such categories, OCR shows limited or even no performance im-
provement. (3) In most cases, our proposed model ViOC-AG can
correctly generate the attribute values after the correction stage
for the trained text decoder. However, there still exists some diffi-
cult attributes such as ‘display’, ‘maximum output’, and ‘sensitivity’.
These attributes are never directly shown as characters in the image.
In addition, these attributes can be hardly learned from the visual
features of the product image. Such difficult cases have the follow-
ing features: (a) Attribute names are rare in the training set. For
instance, ‘maximum output’ and ‘sensitivity’ may only be applied
to some specific products; (b) The values include digital numbers. If
the digital numbers are not shown directly in the image, our OCR
module can not help to correct the attribute values. The numbers
(i.e. 5v, 8200 dpi, etc.) can not be learned from the visual features.
These hard attributes need further exploration in future work.

5 CONCLUSION
We formulate the AVE as a cross-modal generation task, which
only requires product images as the inputs. We propose an OCR-
enhanced generation model ViOC-AG to generate unseen product
aspects. ViOC-AG includes a text-only trainable projector and task-
customized decoder to alleviate both the modality gap and task
disconnection. For zero-shot inference, ViOC-AG employs OCR
tokens and results from a frozen prompt-based LLM to correct the
decoded outputs for out-of-domain attribute values. Experimental
results on MAVE demonstrate that ViOC-AG outperforms other
fine-tuned vision-language models and it can achieve competitive
results with textual generative LLMs, showing the bright future
directions of cross-modal zero-shot attribute value generation.
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