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ABSTRACT

In multi-vertical e-commerce platforms like DoorDash, relatively
newer product verticals such as grocery and retail present a signifi-
cant opportunity for personalization innovation. A key challenge
lies in solving the "cold start" problem for users. This paper intro-
duces a novel framework for enhancing recommendation quality by
transferring knowledge from data-rich verticals (e.g., restaurants at
DoorDash) to data-sparse ones. We leverage Large Language Mod-
els (LLMs) to perform generative inference, synthesizing sparse,
high-dimensional features that encapsulate latent user affinities.
Specifically, we employ a hierarchical Retrieval-Augmented Gener-
ation (RAG) pipeline to derive multi-level taxonomic features from
user restaurant order histories and search queries. These gener-
ated features, encoding both long-term cross-vertical preferences
and short-term intent, are integrated into a production Multi-Task
Learning (MTL) ranking model. We demonstrate through exten-
sive offline and online evaluation that this approach significantly
improves personalization and engagement in emerging business
verticals, effectively bridging the behavioral data gap.
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1 INTRODUCTION

Modern e-commerce ecosystems, characterized by multi-vertical
marketplaces like DoorDash, continually expand into new domains
such as groceries, retail, and beauty. This expansion introduces a
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critical personalization challenge: how to provide relevant recom-
mendations in these verticals for users with no engagement his-
tory. Concurrently, these platforms possess a wealth of behavioral
data from established, high-traffic verticals. This data asymmetry
presents a valuable opportunity for strategic knowledge transfer.

This work addresses this challenge by conceptualizing user be-
havior in established verticals as a source of rich, latent signals that
can inform preferences in emerging ones. We posit that large lan-
guage models are powerful tools for semantic feature engineering
[2, 10, 13, 14]. They can distill unstructured data, such as restau-
rant orders and search queries [7, 9], into structured, interpretable
representations of user affinity.

Our core contribution is a novel methodology that employs a hier-
archical Retrieval-Augmented Generation (RAG) framework [4, 12]
to infer user affinities at multiple levels of a product taxonomy. This
structured inference pipeline mitigates the risk of hallucination and
enhances the fidelity of the generated features. By injecting these
LLM derived features into our production Multi-Task Learning
(MTL) ranking model, we effectively enrich the user representation,
enabling the ranker to discern nuanced cross-vertical preferences
even in the absence of direct historical data. This approach directly
confronts the cold-start problem [3, 11, 15] and demonstrates a prac-
tical path toward building more holistic and adaptive recommender
systems.

2 SYSTEM ARCHITECTURE AND
METHODOLOGY

Our production recommendation system employs a multi-stage
architecture, prominently featuring Two-Tower Embedding (TTE)
models for candidate retrieval [5] and a Multi-Task Learning (MTL)
model for fine-grained ranking [1, 6, 8]. This research focuses on
augmenting the feature space of the MTL ranker to enhance its
ability to model cross-domain preferences. We introduce two novel
classes of LLM-synthesized features:

— Long-Term Cross-Vertical Affinity Profile: Captures a con-
sumer’s latent, historical preferences for taxonomy categories,
inferred from their cumulative restaurant order history.

— Short-Term Intent Profile: Models a consumer’s recent, tran-
sient interests in specific taxonomy categories, as indicated by
their on-platform search activity.
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2.1 Generative Feature Synthesis via
Hierarchical RAG

We employ LLMs to map unstructured user activity (restaurant or-
ders, search queries) to our internal, four-level hierarchical product
taxonomy (L1-L4; e.g., Dairy & Eggs — Cheese — Hard Cheeses —
Cheddar). Using a 20% sample of consumer data from the preceding
three months, we execute the hierarchical RAG process depicted in
Figure 1.

The process operates via cascaded inference. First, the model
identifies broad, top-level (e.g., L1, L2) taxonomic affinities from
the input signals. These initial, high-confidence classifications then
constrain the generative search space for subsequent, more granular
retrievals at lower taxonomy levels (e.g., L3). This iterative refine-
ment strategy enhances precision and relevance by preventing the
model from generating plausible but incorrect subcategories. For
our MTL ranker, we concentrate on L2 and L3 affinities, as L1 is
often too general and L4 suffers from excessive sparsity.

2.2 Prompt Engineering and Inference Control

To structure the model’s input, we concatenate historical restaurant
names and ordered items in chronological order, prioritizing recent
behavior. Search queries are similarly sequenced. This temporal
ordering helps the model capture evolving preferences. The prompt
is enriched with contextual information, including the target tax-
onomy structure and anonymized consumer profile attributes.

To ensure deterministic and high-fidelity output, we set the
inference temperature to 0.1. Critically, the prompt instructs the
model to return a confidence score for each generated affinity and
to only output taxonomies exceeding a confidence threshold of
0.8. This acts as a self-correction mechanism, filtering out low-
confidence or spurious associations.

Prior to implementing the aforementioned improvements in the
prompt, the extracted taxonomies from restaurant orders included
some irrelevant categories, resulting in poorer alignment with the
actual cuisine. For example, as shown in Table 1, a consumer plac-
ing orders from an Indian restaurant was previously associated
with less relevant affinities, such as "Sandwiches" which do not
accurately capture the nuances of Indian cuisine. After applying
the improved prompt engineering techniques, the model instead
produced more specific and appropriate taxonomies, such as "Spe-
cialty Breads (Naan)" thereby significantly enhancing the relevance
of the taxonomic associations.
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CONTEXT_SETUP = "You are a recommendation
engine. Given a consumer’s order history and an
allowed L3 taxonomy, infer up to 50 relevant
L3 categories. Focus on the cuisine of the
restaurant and use only categories present in
the provided taxonomy (case-insensitive match,
output exact taxonomy spelling). Do not invent
categories. Assign a confidence score in [0,1];
include only categories with confidence >=
0.80. Sort by confidence descending; break
ties alphabetically. If no category meets the
threshold, return an empty list. Output must be
strict JSON"

OPERATING_RULES = "Map items to the most
specific applicable L3. If a dish could map to
multiple categories, choose the best-supported
one. If the result is ambiguous and confidence
<0.80, exclude it."

TAXONOMY_INFO = "The allowed L3 categories are:
[L3 taxonomy list]"

USER_HISTORY = "The consumer has ordered the
following dishes from the restaurants in
chronological order (store || dish): [restaurant

name || dish name], "
prompt = CONTEXT_SETUP + OPERATING_RULES + " "
+ USER_HISTORY + " " + TAXONOMY_INFO

2.3 Model Selection and Cost Optimization

A cost-performance analysis of various models, including GPT-40
and GPT-40-mini, revealed that GPT-40-mini delivered compara-
ble output quality for this specific task at a substantially lower
computational cost. To further optimize, we implemented a prompt-
caching strategy. The static portion of the prompt (containing in-
structions and taxonomy) is cached, and only the dynamic user
history portion is appended for each inference call. This token-level
optimization, combined with a just-in-time feature materialization
strategy (updating affinities only upon new user actions), reduced
overall computational costs by approximately 80%.

2.4 Feature Materialization and Serving

A daily batch pipeline computes and updates the affinity features.
These features are materialized to our data lake for model training
and simultaneously propagated to a low-latency online feature
store for real-time inference during serving.

2.5 Qualitative Feature Evaluation

Table 2 provides illustrative examples of the taxonomic affinities
generated. To quantitatively assess the quality of the features, we
conducted two studies, one based on human evaluation and the
other based on LLM as a judge with the more powerful model GPT-
4o, scoring the relevance of personalization on a 3-point scale. As
shown in Table 3 for human evaluation and Table 4 for LLM as
a judge evaluation, features derived from search queries exhibit
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Figure 1: System flowchart illustrating the hierarchical RAG pipeline for generating user affinity features and their integration

into the MTL ranking model.

Table 1: Improvements in the results with prompt engineering techniques

Signal Type Consumer Input History

Before (LLM Output)

After (LLM Output)

Restaurant Orders Royal Spice: Naan; Butter Chicken;

Vegetable Samosa

Sandwiches, Burgers & Wraps,
Entrees, Appetizers & Sides,
Chicken

Specialty Breads, Naan, Vegetable
Sides, Chicken

higher personalization scores, which aligns with the explicit nature
of search intent compared to the implicit signals from order history.

2.6 Multi-Task Learning (MTL) Architecture

Our MTL ranker is designed to jointly optimize for multiple objec-
tives (e.g., click-through rate, add-to-cart, purchase). The total loss
L is a weighted sum of individual task losses £;:

L:

T
ar Li (e, yt),

t=1
where g; is the model’s prediction for task t and «; is a task-specific

weight. We augment the model’s input feature space by concate-
nating our LLM-generated features with existing feature vectors:

e urpy € R?: The new sparse features representing user affinities,
derived from both restaurant orders and search queries.

® ueyg € RP: The existing user engagement feature vector (e.g.,
historical interactions).

® ieng € RY: The item feature vector (e.g., category, brand, price).

The augmented user and item vectors are defined as:

Uaug = [ueng;ULLML i= [ieng]~
Variable-length categorical features, such as the lists of taxonomy
IDs in uryp, are handled by mapping each ID to a dense vector via
a shared embedding table. The embeddings corresponding to a list
are then aggregated into a fixed-size representation using mean
pooling. This technique efficiently handles jagged input tensors
and promotes parameter sharing. The final concatenated feature
vector feeds into a shared MLP trunk, ¢, followed by task-specific
prediction heads:

Z:(}S([uaug,i]), Ur =U(W:Z+bt). (1)

Here, o is an activation function (e.g., sigmoid), and wy;, b; are the
weights and bias of the prediction head for task .

3 EXPERIMENTAL EVALUATION

We conducted rigorous set of offline and online experiments to mea-
sure the impact of LLM-generated features on our item-ranking
model trained on three months of data. Offline evaluation was per-
formed on a 15-day holdout using conversion as the ground-truth
label, and results are reported with the metrics described in the
next section.

3.1 Experimental Setup

We compare the performance of two models using standard evalu-
ation metrics: Area Under the Receiver Operating Characteristic
Curve (AUC-ROC) for classification performance and Mean Recip-
rocal Rank (MRR) for ranking quality.

e Baseline Model: The production MTL item ranking model,
trained exclusively on historical user engagement and item at-
tribute features.

e Proposed Model: An identical MTL architecture augmented
with the LLM-derived user affinity features (urym).

3.2 Offline Evaluation and Cohort Analysis

We evaluated performance across the general user population and
on two specific cohorts critical to our business: "cold-start" con-
sumers (new to non-restaurant verticals) and "power" consumers
(highly active in these verticals). The results, summarized in Fig-
ures 2 and 3, demonstrate a consistent and significant performance
uplift.

Key findings include:

e Overall Population: The proposed model achieved a 4.4%
relative lift in AUC-ROC and a 4.8% lift in MRR, indicating a
broad improvement in ranking quality.

e Cold-Start Consumers: This cohort benefited most from
the restaurant order signal, with the combined signals yield-
ing a 4.0% lift in AUC-ROC and a 1.1% lift in MRR. This
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Table 2: Illustrative examples of LLM-generated category recommendations from consumer signals.

Signal Type | Consumer Input History Generated L3 Taxonomy Affinities (LLM Output)
Restaurant Taco Bell: Cantina Chicken Crispy Taco; Cheese Quesadilla | Tacos, Chicken, Cheese, Naan, Specialty Breads, Coffee
Orders Royal Spice: Cheese Naan; Butter Chicken
Starbucks: White Chocolate Mocha
Search Protein bar, drink, pop tart, protein, yogurt, healthy snacks | Cereal & Granola Bars, Packaged Snacks, Yogurt, Juices &
Queries Smoothies, Protein Supplements, Nutrition Shakes, Energy
Drinks, Sour Cream & Dips

Table 3: Human Evaluation of LLM-Generated Feature Personalization. N=1000 samples per signal.

Signal Source

Not Personalized Partially Personalized Highly Personalized

Restaurant Orders 17.7%
Search Queries 6.8%

29.3% 53.0%
22.5% 70.7%

Table 4: LLM Evaluation of LLM-Generated Feature Personalization (GPT-40). N=1000 samples per signal.

Signal Source

Not Personalized Partially Personalized Highly Personalized

Restaurant Orders 15.6% 27.8% 56.6%
Search Queries 8.2% 30.2% 61.6%
8 Signal ; Signal
B3 MTL w/ restaurant signal = MTL w/ restaurant signal
; E=R MTL w/ search query signal 0 B MTL w/ search query signal
B MTL with both signals é B MTL with both signals
[ 4.8%
6 8s 4.3%
g 5.2% °\° o
= xwn 4
B % 3 4.4% 6 < >
g8 £,
5 4 37 87 22%
g8 5
<3 g2
g -
£

0.9%

0.4%

All consumers New Consumers Power consumers

Figure 2: Relative improvement (%) in AUC-ROC for the Pro-
posed Model over the Baseline across different consumer
cohorts.

validates our hypothesis that historical taste preferences can
be effectively transferred across verticals.

e Power Consumers: This group saw the largest gains from
the search query signal, which captures short-term intent.
The model achieved a 5.2% lift in AUC-ROC and a 2.2% lift
in MRR, showcasing its ability to adapt to recent user needs.

All consumers New Consumers Power consumers

Figure 3: Relative improvement (%) in MRR for the Proposed
Model over the Baseline across different consumer cohorts.

3.3 Online Shadow Deployment

To validate our offline findings in a production environment, we
conducted an online evaluation by shadowing live traffic. The re-
sults, shown in Figure 4, were consistent with the offline analysis.
For the general population, the LLM-augmented model demon-
strated a 4.3% improvement in AUC-ROC and a 3.2% increase in
MRR over the baseline, confirming the real-world efficacy of our
approach.

4 CONCLUSION AND FUTURE WORK

This work successfully demonstrates the efficacy of leveraging
LLMs as a semantic bridge to transfer knowledge from data-rich to
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Figure 4: Relative improvement (%) in online shadow traffic
metrics for the Proposed Model versus the Baseline.

data-sparse domains within a multi-vertical marketplace. By em-
ploying a hierarchical RAG framework to synthesize high-fidelity
user affinity features, we significantly enhanced the performance
of our production MTL ranking model, particularly for cold-start
users.

Our future research agenda will proceed along several promis-
ing vectors. First, we will investigate more advanced prompting
paradigms (e.g., Chain-of-Thought, self-correction) and explore
domain-specific fine-tuning of smaller, more efficient LLMs to fur-
ther improve feature quality and reduce costs. Second, we plan to
integrate these generative features earlier in the recommendation
funnel, specifically within the candidate retrieval stage, to create
a more synergistic, end-to-end personalized system. Finally, we
will explore the temporal dynamics of these affinities to build more
adaptive, session-aware recommendation models.
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