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Abstract
Large Language Models (LLMs) are transforming personalized
search, recommendations, and customer interaction in e-commerce.
Customers increasingly shop across multiple devices, from voice-
only assistants to multimodal displays, each offering different input
and output capabilities. A proactive suggestion to switch devices
can greatly improve the user experience, but it must be offered with
high precision to avoid unnecessary friction. We address the chal-
lenge of predicting when a query requires visual augmentation and
a cross-device switch to improve product discovery. We introduce
Image-Seeking Intent Prediction, a novel task for LLM-driven e-
commerce assistants that anticipates when a spoken product query
should proactively trigger a visual on a screen-enabled device. Us-
ing large-scale production data from a multi-device retail assistant,
including 900K voice queries, associated product retrievals, and be-
havioral signals such as image carousel engagement, we train IRP
(Image Request Predictor), a model that leverages user input query
and corresponding retrieved product metadata to anticipate vi-
sual intent. Our experiments show that combining query semantics
with product data, particularly when improved through lightweight
summarization, consistently improves prediction accuracy. Incor-
porating a differentiable precision-oriented loss further reduces
false positives. These results highlight the potential of LLMs to
power intelligent, cross-device shopping assistants that anticipate
and adapt to user needs, enabling more seamless and personalized
e-commerce experiences.
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1 Introduction
Large Language Models (LLMs) have achieved state-of-the-art per-
formance across a variety of tasks, including text generation, reason-
ing, and question answering [5, 7, 21]. Their integration into virtual
assistants (VAs) offers new opportunities for intelligent, context-
aware interaction [9, 25, 27]. In the e-commerce domain, these
assistants operate within a diverse ecosystem of devices, ranging
from voice-only smart speakers to screen-enabled smartphones and
tablets [2, 26, 34]. Each device supports distinct input and output
modalities, and product catalogs increasingly contain multimodal
representations that include visual, textual, and structured data.
These assistants must retrieve and present such information in
modality-appropriate ways. As customer expectations for person-
alized and visually rich recommendations continue to grow, the
ability of LLM-driven assistants to adapt content presentation to
device capabilities is becoming a critical requirement.

A growing challenge in this setting is proactive device switching,
which involves determining when a query issued to a screenless
assistant requires a visual response that would be better served
on a screen-enabled device. Prior research in cross-device search
has primarily focused on predicting the next device a user will
access. In contrast, our objective is to determine when a device
switch should be suggested to better serve the user’s intent. This
distinction is particularly important when the user’s current device
lacks the modalities necessary to meet the request, such as the abil-
ity to display product images or other forms of visually enhanced
recommendations.

We address this challenge through Image-Seeking Intent Predic-
tion, a novel task for LLM-driven e-commerce assistants. The goal
is to predict whether a user query, issued via speech on a screenless
device, will require a visual modality to fulfill the user’s need. This
problem arises when a voice-only assistant must decide if present-
ing images or other visual content would improve the experience.
Once visual intent is detected, the assistant can proactively suggest
switching to a screen-enabled device or adapt the interface accord-
ingly. We cast this task as a binary, highly imbalanced classification
problem, where a positive label indicates that the current voice-
only interaction should be escalated to a screen-based device. The
task is motivated by two key use cases: (i) enhancing multi-device
user experiences by recommending a switch to a more appropriate
modality [10, 19]; and (ii) supporting adaptive user interfaces that
respond intelligently to predicted modality needs, for example, by
automatically showing images when necessary [20]. The problem
presents several challenges: (i) Minimizing false positives — unnec-
essary device switches disrupt the user experience, making high
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precision essential; (ii) Label imbalance — device-switch events are
rare, and thus switch-worthy queries form only a small fraction
of the data; and (iii) Multimodal context — utterances are spoken,
while retrieved products contain a mixture of textual, structured,
and visual content.
Dataset. Direct supervision for device-switching behavior is rarely
available, and manually annotating visual intent at scale is prohib-
itively expensive. We address this by defining a proxy task that
leverages behavioral signals on screen-enabled devices. Specifi-
cally, we use the action of tapping to open the image carousel as
a weak but scalable indicator of visual intent. This interaction en-
ables large-scale supervision from real-world data without manual
labeling. The model is trained to predict, given an utterance and re-
trieved products, whether the user would have activated the image
carousel, signaling a transition to a visual modality. We construct
a large-scale dataset of 2.2M user interactions collected over six
months from a production-grade multi-device assistant system. The
dataset includes over 900,000 spoken utterances paired with the
top-10 retrieved products per query, along with behavioral labels
from downstream interaction signals.
Image Request Predictor. To address Image-Seeking Intent Pre-
diction, we propose IRP, a model with a generative backbone that
predicts image-seeking intent from the user’s utterance and as-
sociated retrieved product information. IRP jointly encodes the
utterance and product summaries to make predictions about visual
needs. We compare IRP against strong baselines using only utter-
ance transcriptions, intent classifications, or raw product titles. We
find that combining utterance data with structured, summarized
product information yields significant performance gains.
We answer the following research questions:

(RQ1) How does the integration of utterance-level and product-
level features influence predictive performance in Image-
Seeking Intent Prediction?

(RQ2) What is the effect of representing product information through
lightweight summarization compared to using raw product
titles or attributes?

(RQ3) To what extent does optimizing the loss function explicitly
for precision influence performance in this high-precision,
imbalanced classification setting?

The principal contributions of our research are the following:

(i) We define Image-Seeking Intent Prediction, a novel task for
languagemodel-based cross-device assistants in e-commerce,
and propose the Image Request Predictor (IRP), a model for
the task.

(ii) We conduct extensive evaluation on a large-scale proprietary
dataset of real user interactions in amulti-device e-commerce
assistant system.

(iii) We discover that combining query semantics with summa-
rized product data yields consistent accuracy gains, while a
differentiable precision-oriented loss further reduces false
positives.

2 Methodology
We formalize the Image-Seeking Intent Prediction task and present
IRP, an architecture with three modules: an utterance processing

Summarisation

P1 P2 Pn…

Predictor

Probability of an image requestUtterance features Product features

CLS …SEPU1 SEPUtterance 
Preprocessing

Product Information 
Preprocessing

Concatenation

…

SEP …CLS

Utterance information 
processing Product information processing Image request prediction

P1
sum P2

sum P3
sum…

P1
sum Pn

sumSEP SEP … SEP

Pn
sum

U1 Uk

U1 U2 Uk

SEP

Figure 1: IRP architecture. The query and product informa-
tion are processed through respective pipelines, fused into
a joint representation, and passed to a prediction head that
estimates the likelihood of the image-seeking intent.

pipeline, a product information processing pipeline, and an image
request prediction module. Together, these components learn to
determine whether a spoken query requires switching from a voice-
only to a screen-enabled device.

2.1 Task definition
Following prior work [4, 28, 35], we represent each user interaction
as a pair (𝑈 ,P), where𝑈 is the user query and P = p(1) , . . . , p(𝑘 )

is the set of the top-𝑘 products retrieved in response to 𝑈 . Each
query𝑈 consists of a transcription𝑢q and an associated intent label
𝑢int. Each retrieved product p( 𝑗 ) ∈ P is described by a structured
set of attributes:

p( 𝑗 ) = {𝑝 ( 𝑗 )title, 𝑝
( 𝑗 )
brand, 𝑝

( 𝑗 )
size, 𝑝

( 𝑗 )
color, 𝑝

( 𝑗 )
reviews,

𝑝
( 𝑗 )
price, 𝑝

( 𝑗 )
style, 𝑝

( 𝑗 )
group, 𝑝

( 𝑗 )
type} (1)

Due to the lack of labeled supervision for device switching events
and the high cost of manual annotation, we adopt a scalable proxy
task. Specifically, we use the user’s interaction with an image
carousel (i.e., whether they tap to open it) as an implicit signal
of visual intent. This assumption enables the training of models at
scale using real behavioral data.

2.2 Image Request Predictor
Figure 1 illustrates the architecture of IRP. The model processes
utterance and product information through separate pipelines, sum-
marizes retrieved product representations, and fuses them to predict
whether the user’s request implies a need for visual content.

Utterance Processing Pipeline. The user query 𝑈 is transcribed
into text and passed to a preprocessing function 𝑓up, which converts
it into a tokenized sequence:

seq𝑢 = 𝑓up (𝑈 ) = ( [CLS], 𝑢1, [SEP], . . . , 𝑢𝐾 , [SEP]), (2)

where [CLS] and [SEP] are standard special tokens.

Product Information Processing Pipeline. The retrieved products
P are summarized using a function 𝑓sum, which produces an aggre-
gated vector:

psum = 𝑓sum (P) = 1
𝑘

𝑘∑︁
𝑗=1

p( 𝑗 ) . (3)
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This summary is then tokenized via a product preprocessing func-
tion 𝑓pp:

seq𝑝 = 𝑓pp (psum) = ( [SEP], 𝑝1, [SEP], . . . , 𝑝𝑁 , [SEP]) . (4)

Fusion and Prediction. The utterance and product sequences are
integrated by a fusionmodule 𝑓fusion, parametrized to operate either
as direct sequence concatenation or as concatenation over a reduced
set of product tokens obtained via Maximal Marginal Relevance
(MMR) selection [6]. Formally:

𝑋 = 𝑓fusion (seq𝑢 , seq𝑝 ) (5)

= ( [CLS], 𝑢1, . . . , 𝑢𝐾 , [SEP], 𝑝1, . . . , 𝑝𝑁 , [SEP]), (6)

where (𝑝1, . . . , 𝑝𝑁 ) denotes either all product tokens or the MMR-
selected subset. The fused representation𝑋 is then passed through a
classification head 𝑓pred to produce the probability of image-seeking
intent:

𝑝 = 𝑓pred (𝑋 ), 0 ≤ 𝑝 ≤ 1. (7)

2.3 Training Objectives
We model Image-Seeking Intent Prediction as binary classification
and evaluate three loss formulations.

Binary Cross-Entropy (BCE). The BCE lossminimizes cross-entropy
between predicted probability 𝑝 and label 𝑦 ∈ {0, 1}:

LBCE = −𝑦 log(𝑝) − (1 − 𝑦) log(1 − 𝑝) . (8)

Precision Loss. To penalize false positives explicitly, we use a
differentiable approximation of precision [3, 22]:

LPrecision = 1 − TP
TP + FP

, (9)

where TP =
∑
𝑦 · 𝑦 and FP =

∑
𝑦 · (1 − 𝑦), with 𝑦 as the model’s

sigmoid output.

Combined Loss. To balance general accuracy with false-positive
reduction, we define:

LSum = 𝛼 LBCE + 𝛽 LPrecision, (10)

where 𝛼 and 𝛽 are hyperparameters controlling the trade-off be-
tween optimizing overall classification accuracy and prioritizing
high precision.

3 Experiments
We empirically evaluate the Image-Seeking Intent Prediction for-
mulation and IRP on large-scale real-world interaction data from
a production conversational e-commerce assistant. We describe
the dataset, model backbones, and evaluation metrics, then report
results for feature contributions, product summarization, precision-
oriented loss functions, and backbone comparisons, followed by
implementation details.

3.1 Dataset
We construct a large-scale dataset from de-identified interaction
logs collected between August and December 2022 from a produc-
tion conversational e-commerce assistant. The system supports
both screenless devices (e.g., smart speakers) and screen-enabled
devices (e.g., mobile phones, tablets), making it a natural setting for
studying cross-modality behavior.

Data Sampling and Filtering. We start with 2,200,000 user inter-
actions sampled over five months, containing both utterance data
and downstream behavioral signals such as taps. Approximately
10% of these interactions include an image gallery opening action.
To focus on voice-initiated interactions, we filter for utterances
explicitly triggered by the user. This yields a high-quality subset of
900,000 utterance-based interactions, in which 20% are followed by
an image gallery opening. This proportion provides a sufficiently
large and meaningful set of positive examples for our proxy task.

Dataset Characteristics. The resulting dataset reflects realistic
user behavior in a high-traffic, multi-device e-commerce assis-
tant. Each instance in D is represented as a tuple

(
𝑈 𝑖 ,P𝑖 , 𝑦𝑖

)
,

where 𝑈 𝑖 is a spoken utterance with both transcription and in-
tent; P𝑖 = p(𝑖,1) , . . . , p(𝑖,𝑘 ) is the set of top-𝑘 retrieved products
for 𝑈 𝑖 ; and 𝑦𝑖 ∈ 0, 1 is a binary label indicating whether the user
opened the image carousel, serving as a proxy for visual intent.
Each product p(𝑖, 𝑗 ) contains structured metadata including title,
brand, size, color, price, reviews, style, and product category. The
dataset thus captures: (i) natural language voice queries across di-
verse product search contexts, (ii) real-world retrieval results from
a production search system, and (iii) implicit behavioral signals
indicative of multimodal information needs.

This configuration enables training and evaluation for the Image-
Seeking Intent Prediction task at scale, using weak supervision
derived from real-world behavioral data in place of costly manual
annotation.

3.2 Model Backbones
In all experiments, the Image Request Predictor (IRP) uses transformer-
based language model backbones. We evaluate three pretrained
architectures:

• DistilBERT [24]: A compressed variant of BERT that re-
duces parameters by 40% and achieves up to 60% faster in-
ference while retaining over 95% of BERT’s performance.
It is trained via knowledge distillation with a composite
loss combining language modeling, distillation, and cosine
embedding objectives.

• RoBERTa [17]: An optimized variant of BERT that removes
Next Sentence Prediction, uses larger mini-batches and learn-
ing rates, trains on substantially more data, and applies dy-
namicmasking, resulting in consistent performance improve-
ments over BERT.

• XLNet [32]: A generalized autoregressive model that cap-
tures bidirectional context without input corruption by max-
imizing expected log-likelihood over all factorization per-
mutations. It incorporates Transformer-XL features such
as segment recurrence and relative positional encoding to
better handle long-range dependencies.

These backbones are integrated into IRP for encoding the con-
catenated utterance and product sequences (see Section 2), and we
use them consistently throughout training and evaluation. Back-
bone comparisons are reported in an ablation study later in this
section.
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Table 1: Feature Contribution Analysis.

Precision Recall 𝑭05

Utterance 77.83 64.92 73.41
Intent 76.12 40.53 56.32
Title 76.59 56.76 68.90

Utterance, intent 77.93 65.11 73.55
Intent, title 77.34 57.81 69.77
Utterance, title 77.91 63.75 72.94
Utterance, intent, title 78.11 64.19 73.23

3.3 Metrics
In Image-Seeking Intent Prediction, the high cost of unnecessary
cross-device switches requires prioritizing precision, the proportion
of predicted positives that are correct:

𝑃 =
TP

TP + FP
, (11)

where TP and FP denote true and false positives, respectively. We
also report recall, the proportion of actual positives correctly iden-
tified:

𝑅 =
TP

TP + FN
, (12)

where FN denotes false negatives. To jointly assess both metrics,
we use the 𝐹𝛽 score:

𝐹𝛽 =
(1 + 𝛽2) · 𝑃 · 𝑅
𝛽2 · 𝑃 + 𝑅

, (13)

where 𝛽 controls the relative weight of recall. We set 𝛽 = 0.5,
placing greater emphasis on precision while retaining sensitivity
to recall.

3.4 Experimental Setup and Results
We conduct three experiments to answer the research questions
outlined in Section 1. Each experiment investigates a specific aspect
of the model architecture or training strategy. For each, we present
the setup, results, and key insights.

3.4.1 Feature Contribution Analysis. We begin by evaluating the
contribution of different feature types to model performance. We
test models trained with: (i) utterance transcription, (ii) utterance
intent, (iii) product title (top-1 product), (iv) combinations of the
above. Utterance features𝑈 are tokenized via 𝑓up to produce seq𝑢 ,
and product titles 𝑃 are processed via 𝑓pp to produce seq𝑝 . Com-
bined features are fused via 𝑓concat and passed to the image request
predictor.
Results. Table 1 shows that utterance features alone achieve the
best performance across all metrics. However, combining utterance
with intent and product title yields even better Precision (78.11)
and a strong overall performance. Notably, utterance + intent gives
the highest Recall (65.11) and 𝐹0.5 (73.55).
Upshot. Utterance features are the strongest individual signal, but
combining them with product metadata enhances performance.
Feature fusion significantly improves Precision, which is critical
for avoiding unnecessary modality switches.

Table 2: Retrieved Product Summarization.

Precision Recall 𝑭05

Agg. by mean (𝑓𝑠𝑢𝑚) 78.47 60.42 71.61
MMR [6] 78.27 61.94 72.27

3.4.2 Product Summarization and Representation. We expand the
product representation by including all selected product attributes
(title, brand, size, color, reviews, price, style, group, and type). Due to
input length constraints, we summarize the top-𝑘 retrieved products
using: (i) Mean pooling (𝑓sum), (ii) Maximal Marginal Relevance
(MMR) [6]. The summarized vector Psum is then tokenized and
concatenated with utterance features as in Experiment 1.
Results. As shown in Table 2, aggregation by mean improves Pre-
cision (78.47), while MMR yields the highest Recall (61.94) and 𝐹0.5
(72.27). Both summarization techniques lead to better results than
using product titles alone.
Upshot. Incorporating a richer product representation improves
model performance, especially when combined with effective sum-
marization. Mean pooling favors precision, while MMR offers a
better balance between precision and recall.

3.5 Ablation Studies
We conduct a series of ablation experiments to isolate the effects of
main design choices in IRP.

3.5.1 Ablation on Loss Functions. We compare three training objec-
tives: (i)LBCE, the standard binary cross-entropy loss; (ii)LPrecision,
a differentiable surrogate for precision; and (iii) LSum, a weighted
combination of the two. Each loss function is evaluated across mul-
tiple input configurations, including single-feature models (e.g.,
utterance, intent, or title), feature pairs, and the full input setting
using all features.
Results. Table 3 summarizes the outcomes. Models trained with
LBCE and LSum achieve the best performance in eleven configu-
rations each, while LPrecision leads in only three. In most settings,
LSum is competitive or superior to the others in 𝐹0.5.
Upshot. While BCE remains a strong baseline, incorporating preci-
sion into the loss yields consistent improvements in high-precision
use cases. The combined loss strikes a favorable balance, especially
for rare-event detection where false positives are costly.

3.5.2 Ablation on Predictor Backbone. To assess the trade-off be-
tween performance and model efficiency, we conduct an ablation
study evaluating different transformer backbones for the image
request predictor module in IRP. Specifically, we compare three
widely used sequence classification architectures: distilBERT [24],
RoBERTa [17], and XLNet [32].

As shown in Table 4, XLNet achieves the best overall perfor-
mance across all metrics. However, distilBERT performs competi-
tively while using significantly fewer parameters – just one-fifth
the size of XLNet – highlighting its suitability for deployment in
resource-constrained environments.
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Table 3: Ablation on Loss Functions.
Loss Precision Recall 𝑭05

LBCE 77.83 64.92 73.41
LPrecision 77.59 65.54 73.55Utterance
LSum 77.89 64.02 73.05

LBCE 76.12 40.53 56.32
LPrecision 76.32 31.03 42.43Intent
LSum 76.11 40.53 56.33

LBCE 76.59 56.76 68.90
LPrecision 76.36 53.39 66.87Title
LSum 76.56 56.63 68.82

LBCE 77.93 65.11 73.55
LPrecision 77.48 65.63 73.53Utterance, intent
LSum 77.91 63.67 72.90

LBCE 77.34 57.80 69.77
LPrecision 77.23 52.38 66.52Intent, title
LSum 77.09 58.52 70.04

LBCE 77.91 63.75 72.93
LPrecision 77.64 63.64 72.75Utterance, title
LSum 77.99 64.88 73.48

LBCE 78.11 64.19 73.23
LPrecision 77.86 62.61 72.39Utterance, intent, title
LSum 78.20 63.60 73.01

LBCE 78.47 60.42 71.61
LPrecision 77.99 62.87 72.58IRP
LSum 78.22 63.27 72.87

Table 4: Ablation on Predictor Backbone.

Architecture Precision Recall 𝑭0.5 #Params

DistilBERT [24] 78.47 60.42 71.61 66M
RoBERTa [17] 78.78 59.28 71.14 125M
XLNet [32] 78.79 60.64 71.85 340M

3.6 Implementation Details
All models are trained for 20 epochs using a batch size of 𝛽 = 128, a
learning rate of 𝜂 = 2𝑒−5 and a weight decay of 𝜆 = 1𝑒−2. Optimiza-
tion is performed using the AdamW optimizer [18]. We initialize
all models using publicly available pretrained checkpoints [30].

4 Related Work
Multimodal Retrieval in E-Commerce. mariyaE-commerce re-
trieval systems increasingly leveragemultimodal inputs such as text,
images, and structured product metadata for ranking and recom-
mendation [11, 12, 26, 35]. Vision–language models have been used
to improve product understanding and retrieval quality [15, 31],
while virtual assistants are evolving toward richer multimodal in-
teractions [20]. However, most prior work assumes a fixed modality,
focusing on improving retrieval accuracy or dialogue generation.
In contrast, we address the problem of deciding when a query is
best served via a visual modality. Rather than fusing modalities for
ranking, we use retrieved product metadata to infer visual content
needs, enabling proactive e-commerce assistant behavior.
User Intent Prediction. Inferring user intent from implicit be-
havioral signals is a long-standing topic in information retrieval

and recommendation [1, 16]. Clicks, hovers, and scrolls have been
widely used in learning-to-rank and personalized search. More re-
cent work has modeled multiple latent intents from multimodal
data and implicit feedback [31], or inferred visual intent from user
actions in conversational settings [33]. Our approach shares the use
of implicit feedback but differs in focus and supervision: (i) we pre-
dict modality preference rather than item relevance or task intent,
and (ii) we employ a specific behavioral signal (image carousel taps)
as a scalable, weakly supervised proxy for visual information need,
enabling high-precision intent models without manual labeling.
Cross-Device Search. Cross-device behavior has been extensively
studied in web and mobile search [10, 19, 29], often modeling de-
vice transitions within multi-session tasks. Recent work explores
proactive adaptation in assistants, where systems adjust to sit-
uational context such as attention, environment, or device con-
straints [8, 13, 23]. We differ in scope and formulation: instead of
predicting the next device, we predict whether a voice-issued query
on a screenless device requires a visual response. This prediction
can proactively trigger a device-switch suggestion. By combining
utterance understanding, product metadata, and weak supervision,
our method enables assistants to anticipate and act on latent modal-
ity needs in real time.

5 Conclusions
We introduced Image-Seeking Intent Prediction, the task of predict-
ing when a query to a screenless assistant should trigger a proac-
tive switch to a screen-enabled device. This setting is important
for cross-device e-commerce assistants, where some interactions
require visual augmentation. Given the high cost of unnecessary
switches, we emphasized precision and optimized for both Preci-
sion and 𝐹0.5. We proposed IRP, which integrates features from
user utterances with product data, and improved training with a
combined binary cross-entropy and differentiable precision loss,
reducing false positives while maintaining strong coverage.

Using a large-scale proprietary dataset of over 900,000 utter-
ance–product pairs, we observed three main findings. First, while
utterance features alone are strong predictors, augmenting them
with structured product attributes yields consistent gains. Light-
weight summarization methods such as mean pooling and Maximal
Marginal Relevance (MMR) improve accuracy without substantial
overhead. Second, a precision-oriented auxiliary loss further re-
duces incorrect visual triggers, which is essential for maintaining a
seamless user experience. Third, in backbone comparisons, XLNet
achieved the highest predictive performance, whereas distilBERT
offered a favorable trade-off between accuracy and efficiency.

These results underline the value of multimodal fusion and task-
aligned optimization for cross-device virtual assistants. They also
highlight the promise of lightweight generative models, adapted
for image-seeking intent prediction, as a practical path toward
scalable and responsive production systems. Compact generative
models, when paired with effective summarization and loss design,
can approach the accuracy of larger architectures while remaining
suitable for latency- and resource-constrained environments.
Limitations. Our approach is trained using a proxy signal—image
carousel interactions—that may not capture all cases of visual intent,



RecSys GenAIECommerce’25, September 22, 2025, Prague, Czech Republic Hendriksen et al.

leading to potential label noise. The method also depends on struc-
tured, high-quality product metadata, which may be unavailable
or noisy in other domains. Moreover, while we evaluate multiple
transformer backbones, we do not explore recent vision–language
or multimodal pretraining approaches that could further improve
performance. Finally, our evaluation is offline; live deployment stud-
ies are required to assess real-world effectiveness, user satisfaction,
and unintended consequences.
FutureWork. Future directions include incorporating cross-modal
attention within the product encoder, exploring multimodal trans-
formers to improve fusion, and collecting explicit human annota-
tions for visual intent to enable more accurate benchmarking [14].
Live A/B testing could provide deeper insights into user experience
impacts and system-level trade-offs.
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