TOD-ProcBench: Benchmarking Complex Instruction-Following
in Task-Oriented Dialogues

Sarik Ghazarian® Abhinav Gullapalli* Swair Shah™
sghazari@amazon.com gabhik@amazon.com shahswai@amazon.com
Amazon Amazon Amazon
Anurag Beniwal Nanyun Peng Narayanan Sadagopan
beanurag@amazon.com pengnany@amazon.com sdgpn@amazon.com
Amazon Amazon Amazon
Zhou Yu
amznzya@amazon.com
Amazon

Abstract

In real-world task-oriented dialogue (TOD) settings such as cus-
tomer support for trip booking, banking, and healthcare, agents are
required to strictly adhere to complex instructions while conducting
multi-turn conversations with customers. These instructions are
typically presented in natural language format and include general
guidelines and step-by-step procedures with complex constraints.
Existing TOD benchmarks often oversimplify the complex nature
of these instructions by reducing them to simple schemas composed
of intents, slots, and API call configurations. To address this gap
and systematically benchmark LLMs’ instruction-following capa-
bilities, we propose TOD-ProcBench, a challenging benchmark
featuring complex process instructions with intricate, fine-grained
constraints that evaluates various LLMs’ abilities to understand and
follow instructions in multi-turn TODs. Our benchmark dataset
comprises instruction documents derived from the high-quality
ABCD dataset with corresponding conversations under human
quality control. We formulate fine-grained constraints and action
procedures as multi-level condition-action instruction statements.
We design three tasks to comprehensively benchmark LLMs’ com-
plex instruction-following capabilities in multi-turn TODs. Task 1
evaluates how LLMs retrieve the most relevant statement from a
complex instruction and predict the corresponding next action. In
Task 2, we synthesize instruction-violating responses by injecting
inconsistencies and manipulating the original instructions, and then
we analyze how effectively LLMs can identify instruction-violating
responses. Task 3 investigates LLMs’ abilities in conditional gen-
eration of instruction-following responses based on the original
complex instructions. Our benchmarking results reveal significant
gaps in LLMs’ instruction-following capabilities in multi-turn con-
versations across all three tasks. Additionally, we conduct studies

*Both authors contributed equally to this research.
FWork performed while at Amazon.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Genaiecom °25, Prague, CZ

© 2025 Copyright held by the owner/author(s).

on the impact of multilingual settings and different instruction
text formats on compliance performance. We release our bench-
mark for the research community’s efforts in continuing to improve
multi-turn TODs’ complex instruction-following capabilities.

Keywords
Task-Oriented Dialogues, Large Language Models, Benchmarks

ACM Reference Format:

Sarik Ghazarian, Abhinav Gullapalli, Swair Shah, Anurag Beniwal, Nanyun
Peng, Narayanan Sadagopan, and Zhou Yu. 2025. TOD-ProcBench: Bench-
marking Complex Instruction-Following in Task-Oriented Dialogues. In
Proceedings of the second workshop on Generative Al for E-Commerce 2025,
September 22, 2025. ACM, New York, NY, USA, 34 pages.

1 Introduction

Task-oriented dialog systems (ToDs) take decisive steps and actions
when interacting with users with the primary goal of satisfying
customer requests [13, 16, 19]. In multi-turn interactions with users,
they initially comprehend a user’s query and then collect informa-
tion needed to address the request while following the constraints
defined by complex instructions. Complex instructions comprise
strict guidelines that dictate under what conditions the actions and
API calls must be executed [2, 10-12]. The complexity of these
instructions varies based on the user’s intent and the task domain.

Existing datasets either fail to capture challenges due to multi-
turn conversation or fail to capture real-world instruction complex-
ity, lacking fine-grained conditional instructions shown in Figure 1.
Real-world instructions typically use natural language IF (Con-
dition) - THEN (Action) structures which introduce ambiguity
compared to symbolic formats but express more complex guid-
ance. This creates a need for public datasets featuring multi-turn
conversations that comply with fine-grained natural language con-
ditional instructions. Figure 1 demonstrates how ComplianceScorer
incorrectly labels all responses as compliant when responses R2
and R3 actually violate fee removal instructions, highlighting the
need for fine-grained conditional instructions beyond basic work-
flows. Natural language instructions offer the additional benefit of
seamlessly sharing consistent instructions between human agents
and chatbots without conversion. For this purpose, we construct

Genaiecom °25, September 22, 2025, Prague, CZ

A: hi, what can i help you with?
C: hi there. i wanted to check the status of my most recent order
because i see an extra fee on the invoice, and i'm not sure why.

A: okay, can | have your name?

C: sure. my name is albert sanders

Ac: account has been pulled up for albert sanders. pull-up-account
A: can i have your account id and order id?

C: my account id is <account_id> and my order id is <order_id>
Ac: identity verification in progress ... ~ verify-identity

Ac: querying the system for an answer ...
A: what is your membership level?
C: i have a guest membership

ask-the-oracle

membership

\

update-order

update-order

Ghazarian et al.

If customer inquires about an extra/mystery fee on their order:
- Get customer's full name, account ID, and order ID to verify
identity
- Check system for reason behind the extra fee
- If it was a company error:
- Ask customer's membership level
- If Gold or Silver member:
- Ask amount of extra fee
- Remove fee from order
- If Bronze or Guest member:
- Explain fee cannot be removed
- Optionally offer to escalate to manager for Bronze members
- If not a company error (e.g. price surge, customer error):
- Explain reason for fee
- Do not remove fee unless Gold/Silver member as a courtesy

R1:iam sorry, this fee was not a mistake and i cannot remove it. -- Compliance score: 0.85

R2: that's great, i will be able to remove the fee for you . -- Compliance score: 0.86 x

R3: i am sorry, this fee was a mistake and i will remove it. -- Compliance score: 0.88

Figure 1: Workflow steps (orange boxes) from ABCD dataset show the the order of calling actions for “status_mystery_fee” intent, an
inadequate representation of all nuanced constraints in the corresponding TOD-ProcBench instruction document excerpt on the right.

a multilingual dataset called TOD-ProcBench which contains con-
versations and complex instructions in the condition-action format.
Our contributions are:

e We propose TOD-ProcBench, based on ABCD [2], as a collec-
tion of benchmarks with complex condition-action natural
language instructions and multilingual multi-turn conversa-
tions.

e We publish benchmarks for three TOD tasks: (1) instruc-
tion and next action selection - this task measures how well
LLM can identify applicable instructions during a multi-turn
conversation (2) instruction-following evaluation - this task
measures how well LLM can detect violation of complex in-
struction (3) instruction-following response generation - this
task measures how well LLM can respond under complex
instructions written for an entire conversational interaction.

e We propose an approach for generating a test benchmark of
instruction-violating responses in TOD-ProcBench by inject-
ing different perturbations to instructions and prompting the
LLM to generate responses which are similar to the ground-
truth yet adhere to manipulated instructions.

e We show that all LLMs considered in this study struggle to
perform accurately on (1) complex formatted instruction se-
lection, (2) instruction-violation response evaluation, and (3)
instruction-following response generation tasks. In addition,
we find that LLMs have varying multilingual capability for
those tasks. For Task 1 and 3, LLMs have similar performance
across all languages. In Task 2, LLMs have significantly bet-
ter performance in English, indicating the multilingual gap
in more challenging, fine-grained tasks.

2 Related Work

In general, ToDs such as customer service chatbots, physical robots,
virtual assistants [4, 5, 14] are strictly required to comply with the
predefined procedures when executing API calls and actions to re-
solve user issues. Datasets have been introduced to incorporate con-
straints on TODs through schema-guided paradigms. The schema
of the synthetic SGD dataset [11] imposes constraints through the
set of obligatory slots and the order in which they must be filled
for actions to be executed. As shown in Appendix A, SGD schema

for finding next flight intent includes slots (flight’s origin and desti-
nation, both airports, seating class and etc.), their definitions and
values, and required slots for each intent. Similar to SGD, STAR [7]
and [12] present the schema concept in ToDs in flowchart format.
For these datasets, the schema with actions and slot values do not
usually reflect the nature of real-world instructions as the latter of-
ten has more complex step-by-step structure and condition-action
combination. The Action-Based Conversations Dataset (ABCD) [2]
which our study is based on incorporates guidelines that a human
agent needs to execute in a predefined order. We go a step fur-
ther and present more realistic, natural language instructions in
the form of multi-level condition-action statements that provide
precise information about the conditions that are required to be
true for actions to be executed. More recent datasets and studies
benchmark an LLM agent’s ability to follow SOPs [6, 8]. Their focus
is more on the accuracy of tool selection, complementing our study
of conversational capabilities in a multi-turn dialogue setting.

3 TOD-ProcBench

In our setting, to generate a response r for a given dialogue history u
(for example, “user: i need to return this jacket. it is the wrong size”)
within a conversation in language [, a TOD system D must follow
a set of conditions ¢ C C and execute a sequence of corresponding
actions a = (aj, ay, ..., an) with a; € A outlined in a given instruc-
tion n € N. We present multilingual TOD-ProcBench with two
main dimensions having three and seven variations, respectively:
(1) the format dimension f of n € N with English natural language
(fi="Nested If-Then”, f,="Flattened If-Then”, and f3="Flattened
JSON Mappings of Conditions and Actions”) and (2) the language
dimension [of the conversation (Arabic, Chinese, English, French,
German, Hindi, Spanish).

3.1 Complex Instruction Components

3.1.1 Conditions. Specific states or attributes, such as customer
attributes (e.g., membership level), item properties (e.g., purchase
date), or conversation states (e.g., user intent) must be verified
before executing a sequence of corresponding actions.

3.1.2 Actions. The TOD must execute specific operations or re-
sponses when associated conditions are satisfied. Actions are or-
ganized hierarchically with conditions. For example, when a user

TOD-ProcBench: Benchmarking Complex Instruction-Following in Task-Oriented Dialogues

inquires about the return policy (1st-level condition), the agent
must first identify the user’s membership level (1st-level action).
If the user has a silver membership (2nd-level condition), then the
agent provides specific information like “only purchases in the last
6 months are returnable” (2nd-level action).

3.1.3 Composition. Similar to prior works such as Wen et al. [17]
and Li et al. [6], we use six composition techniques to derive com-
plete, complex instructions with the foundational condition and
action components: Single, And, Or, Chain, Selection, Nesting.

3.2 Instruction Document Construction

We derive TOD-ProcBench from the ABCD dataset [2], a collection
of human-written conversations created by annotators following
predefined workflow actions. We aggregate all human-human con-
versations with the same user intent from ABCD, which inherently
contain similar conversation trajectories. In Appendix B, we show
examples and symbolic notations for each of the three complex
instruction formats, fi, f2, f3.

Format fi. We generated “Nested If-Then” complex instructions,
with one distinct instruction document for each of the 55 user
intents in ABCD, using LLMs with 1-shot examples for natural
language condition-action instructions (averaging 146 conversa-
tions per intent). We quantify the complexity of TOD-ProcBench
with characterizations such as an average conditional branching
factor of 2.2 with up to 4 nested conditional levels and an average
condition-action ratio of 0.64. To answer the question “How does
the format of complex natural language instructions affect an LLM’s
compliance capability?”, we use fi to derive two additional formats
of the instructions which still present the fundamental conditions
and actions in English natural language text.

Format f. “Flattened If-Then” effectively flattens the nested “If-
Then” structure of fi into a sequence of single-level condition-action
“If-Then” statements. We use this format to evaluate whether LLMs
have a strong preference for the Nesting and Chain composition
techniques present in f; but not f;. The flattened structure of f;
reduces a Chain into a series of composite conditions with And.

Format f3. “Flattened JSON Mappings of Conditions and Actions”
transforms the natural language “If-Then” statements in f into a
structured JSON object containing a list of maps, each of which
denotes relevant conditions and actions to be considered.

3.3 Expanding to Multilingual Conversations

As a practical application of our work and a first step to evaluate the
multilingual capabilities of LLMs in complex instruction-following,
we seek to answer the question “Are English instructions still ef-
fective to guide multi-turn conversations in another language?”.
This study will help justify whether there is a need to produce a
high-quality construction of instructions in other languages for pro-
duction settings where English instructions may be used in global
marketplaces. We translate only the conversations component of
the original ABCD dataset to six other diverse languages: Arabic,
Chinese, French, German, Hindi, Spanish.

Genaiecom ’25, September 22, 2025, Prague, CZ

3.4 Quality Verification

We ask human annotators to assess the quality of TOD-ProcBench’s
English conversation pairings with the 55 generated documents in
format f; for the test conversations of ABCD dataset. The anno-
tators answer the following Yes/No questions shown in the user
interface in Figure 3 (Appendix A):

Accuracy: Does the generated instruction accurately reflect
information in the conversation? If the answer is no, the annotator
should provide which part of the instruction is incorrect.

Missing;: Is there any important information from the conversa-
tion that is missing from the model-generated instruction? If the
answer is yes, the annotator should specify which part from the
conversation is not in the instruction.

Three annotators evaluated each conversation-instruction pair
(3,012 total annotations). Annotator agreement was complete for
63% of conversations, with majority voting determining “accu-
racy” (82%) and “missing” (15%) assessments. The top-3 accurate
annotations are for the recover_password, recover_username and
search_results intents which share similar conversation trajectories,
while the bottom-3 belong to the shirt, timing and policy intents
which can include a broad range of queries. We only focus on the 769
high-quality pairs. Using English conversation pairings with Eng-
lish instructions in format fi as a base version of TOD-ProcBench,
we expand the dataset along the two dimensions of instruction
format and conversation language. For the format and multilingual
expansion datasets, we leverage the LLM judge to evaluate the
quality of both, with 100% correctness for the format changes and
98.3% to 99.8% for each language variation.

4 Tasks

For all experiments across three tasks, three instruction formats,
and seven conversation languages, we prompt the following six
LLMs to conduct chain-of-thought (CoT) [18] by first generating
a step-by-step reasoning and then generate the respective output:
Qwen3-14B [20], Llama3.3-70B !, Gemma3-27B-IT 2, Claude3.5-
Sonnet-V1, Claude3.5-Sonnet-V2, Claude3.7-Sonnet 3. Experimental
results which are not presented in tables in the following sections
are presented in Appendix D for completeness.

4.1 Task 1: Next Action Prediction

Task 1 evaluates ToDs’ ability to retrieve relevant instructions and
predict appropriate next actions conditioned on conversation his-
tory. For all 30 actions (details in Appendix A, C) from the ABCD
dataset, we define trigger conditions that determine when each
action should be executed. We also introduce an empty action to
handle scenarios in which the customer’s goal has already been
met and no further action is required from the agent.

4.1.1 Dataset. To evaluate model performance in Task 1 at differ-
ent stages of the user-agent interaction, we create input data by
extracting all partial conversation transcripts that end with the cus-
tomer’s turn in a given conversation. For example, a conversation
with four customer turns leads to a list of four partial conversations.

!https://huggingface.co/meta-1llama/Llama-3.3-70B-Instruct
Zhttps://huggingface.co/google/gemma-3-27b-it
3https://docs.anthropic.com/en/docs/about-claude/models/overview

https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/google/gemma-3-27b-it
https://docs.anthropic.com/en/docs/about-claude/models/overview

Genaiecom °25, September 22, 2025, Prague, CZ

We then pair each partial conversation with its corresponding in-
struction. Overall, 6953 partial conversations are extracted from
1004 test conversations. To examine the accuracy of models’ next
agent action predictions, we process the list of workflow steps from
ABCD for each partial conversation history and identify actions
that are most relevant to existing agent turns in the conversation
history. The first action from the remaining workflow steps is used
as the ground-truth next agent action.

4.1.2 Results. We prompt six LLMs to generate the next agent turn
and top k = 1 or k = 2 most relevant instruction given the conversa-
tion history, list of all instructions and possible agent actions with
the conditions for invoking each of these actions. In computing
the top k = 2 accuracy, we check whether any of the two relevant
instructions retrieved by LLMs is the ground-truth instruction or
not. All models are executed in a few-shot in-context learning [1]
paradigm where we provide three demonstrations for LLMs.

Table 1 depicts the accuracy of the models in predicting the
correct instruction and agent’s next action. While the larger LLMs
maintain a relatively more consistent performance for k = 1 and
k = 2, all LLMs recorded higher accuracy for the top-k = 2 sce-
nario for both overall accuracy and only instruction retrieval. Most
LLMs demonstrate a preference for format f; and all LLMs demon-
strate more difficulty in correctly predicting the agent’s next action,
likely attributable to the subtle distinctions between actions and
the overlapping nature of their triggering conditions. We also com-
pute accuracy of the models in predicting the correct instruction
and action based on relative position of the given agent response
in the conversation, assigning turns to beginning, middle or end
based on whether they are located in the beginning, middle, or final
third of the agent turns in the conversation. According to Table 1,
larger models perform consistently throughout the conversation.
Although smaller models perform better at instruction retrieval
and action predictions as they get more information from the con-
versation history, all LLMs still have more room for improvement.
As shown in Appendix D, larger models tend to outperform smaller
models across the conversation languages but performance of all
LLMs is not severely impacted by language.

4.2 Task 2: Compliance Evaluation

Task 2 benchmarks LLMs’ capabilities to score compliance of a
given ToDs’ response with respect to the dialogue history and the
instruction that the agent must follow. Such capability is essential
for an LLM as a quality verifier during inference and a proxy for
improving the development process for instruction-following ToDs.
We formulate a binary classification task to distinguish between
instruction-following and instruction-violating agent responses.

4.2.1 Dataset. We only focus on agent utterances that are directly
relevant to instructions. To isolate such responses from generic re-
sponses such as greeting / acknowledging customer / pure empathy,
we leverage a LLM to classify agent turns as relevant or irrelevant
in the 6953 partial conversations from Task 1 dataset.

4.2.2 Compliance Manipulation Pipeline. We use human-written
ABCD responses as instruction-following examples and generate

Ghazarian et al.

instruction-violating counterparts with a four-step pipeline (Fig-
ure 2): (1) extract relevant instructions, (2) manipulate extracted in-
structions, (3) generate instruction-violating responses based on the
manipulated instructions, (4) verify whether generated instruction-
violating responses entail original ground-truth responses.

1) Extract Instruction: We use dialogue history, instruction doc-
ument, and the ground-truth instruction-following agent response
as input when prompting the LLM to select a section (including its
closest ‘if* condition) of the instruction to which the ground-truth
response is directly related. If such a relevant part of the instruction
is not present, we exclude this response sample.

2) Manipulate Instruction: We manipulate both the extracted
instruction section and the complete source instruction using an
LLM to simulate following categories of violations:

Fine-grained parameter mismatch: We substitute numerical
values (e.g., number of days for which a customer is eligible to return
an item) in the extracted section of the instruction with randomly
generated numbers, simulating subtle compliance violations.

Single-condition action replacement: For instructions with
one condition and multiple actions, we randomly substitute an
original action with either its negation or an alternative action from
the same instruction, capturing action-level instruction violations.

Multi-condition action replacement: For instructions with a
composition of multiple conditions, we alter the logical condition-
action relationships by randomly replacing a target action with
an action corresponding to other conditional branches within the
same instruction. For example, we could apply standard member
return policies for a gold member, violating the true dependence of
actions on their corresponding conditions.

3) Generate Response: We provide dialogue history, manipu-
lated and original instructions, and ground-truth response to LLM
and prompt it to minimally revise the ground-truth response to
cover the main difference between the original and manipulated in-
structions. We explain in the prompt that generated responses must
comply with manipulated instructions. This implicitly guarantees
that the generated response is an instruction-violating response.

4) Verify Entailment: We used LLM to verify that generated
instruction-violating responses do not entail ground-truth responses.
Of 2288 generated samples, 307 required additional manipulation
cycles. Manual verification confirmed 87% accuracy in instruction
violations (1982 samples), resulting in a final dataset of 3964 bal-
anced examples (compliant and non-compliant) for Task 2.

4.2.3 Results. We compare the six LLMs as binary classifiers for
instruction violations in TOD-ProcBench using two approaches.

Approach 1: Given the conversation, the next agent response,
and the relevant instruction section, the LLM should classify the
agent’s next response as compliant or instruction-violating.

Approach 2: LLM first attributes the given agent response to the
most relevant instruction and then verifies whether the identified
instruction and originally provided ground-truth instruction are
entailing each other. Entailment implies a compliant response.

We leverage accuracy as the evaluation metric for Task 2. As Ta-
ble 2 indicates, all models perform better for English conversations,
indicating the multilingual performance gap in more challenging
and fine-grained tasks. Table 2 also highlights Approach 2’s impact

TOD-ProcBench: Benchmarking Complex Instruction-Following in Task-Oriented Dialogues Genaiecom 25, September 22, 2025, Prague, CZ

Model Overall Instruction Retrieval Begin Middle End Best Format
Claude3.7-Sonnet 0.3948 / 0.4310 0.8267 / 0.8943 0.3878 /0.4481 0.3834/0.4074 0.4161/0.4359 h/h
Claude3.5-Sonnet-V2 0.3312/0.4182 0.7311/0.8765 0.3270/0.4214 0.3333/0.4126 0.3341/0.4204 filf
Claude3.5-Sonnet-V1 0.3187/ 0.3716 0.7057 / 0.8304 0.3185/0.3750 0.3342/0.3730 0.3018 / 0.3660 flfz
Qwen3-14B 0.3122 / 0.3279 0.7792/ 0.8419 0.1645 / 0.1668 0.2828 /0.2880 0.5289/0.5728 fi’lh
Gemma3-27B-IT 0.2221/0.2559 0.6138 / 0.7559 0.0770 / 0.0755 0.2144/0.2392 0.4113 / 0.4990 filh
Llama3.3-70B 0.1447 / 0.2497 0.2503 / 0.6612 0.1463 / 0.2620 0.1477 / 0.2366 0.1393 / 0.2488 flhA

Table 1: Task 1 accuracy and preferred instruction format for top k = 1 and k = 2 instruction retrieval and next action prediction given English
conversations. Each entry is in the form k = 1/k = 2. “Overall” denotes both instruction retrieval and next action prediction instead of only
“Instruction Retrieval”. “Begin”, “Middle”, “End” denote the respective 1/3 segments of the conversation. The best result per column is bolded.

EXTRACT INSTRUCTION MANIPULATE INSTRUCTION

GENERATE RESPONSE VERIFY ENTAILMENT

If customer wants to upgrade shipping to overnight:
- Get customer’s full name or account id
- Gel customer’s order id
- Verify customer's identity
- Check the shipping status of the order ‘

If customer wants to upgrade shipping to overnight:
- Get customer’s full name or account id
- Get customer’s order id
- Verify customer's identity

= Charge $20 fee to upgrade shipping ‘

AGENT: To upgrade your shipping to overnight,
there will be a $20 fee. Let me know if you would
still like me to process the upgrade.

generated
response

ground-truth
response

Figure 2: The proposed pipeline for generating instruction-violating responses for Task 2.

Model EN FR DE ES ZH AR HI

Claude3.7-Sonnet 0.7593/0.7364 0.4861/0.4420 0.4899/0.4379 0.4826/0.4427 0.4786/0.4485 0.4723/0.4410 0.4740/0.4410
Claude3.5-Sonnet-V2 0.7215/0.6935 0.4960/0.4945 0.5005/0.4914 0.4980/0.5028 0.4965/0.5010 0.4960/0.5003 0.5005/0.5005
Claude3.5-Sonnet-V1 0.6857/0.6847 0.5038/0.4962 0.5068/0.5020 0.5035/0.5066 0.5081/0.4945 0.4904/0.4907 0.5050/0.4962
Llama3.3-70B 0.7283/0.5636 0.7273/0.5346 0.7303/0.5388 0.7250/0.5356 0.6978/0.5545 0.6266/0.4970 0.6405/0.5129
Qwen3-14B 0.7046/0.6937 0.6968/0.6905 0.6958/0.6872 0.6965/0.6847 0.6965/0.6907 0.6920/0.6837 0.6895/0.6758
Gemma3-27B-IT 0.6968/0.5616 0.6890/0.5436 0.6773/0.5477 0.6935/0.5482 0.6890/0.5404 0.6791/0.5376 0.6804/0.5409

Table 2: Task 2 accuracy comparison between Approach 1/Approach 2 with instruction format f; across conversation languages
(English (EN), French (FR), German (DE), Spanish (ES), Chinese (ZH), Arabic (AR), Hindi (HI)). The best result per language is

bolded and the best result per model is underlined.

on the compliance evaluation performance as all models demon-
strate inferior performance when relying on instruction-level com-
parisons. Approach 2 increases the complexity of the compliance
evaluation task by having the model first generate the relevant
instruction based on the given conversation and then verify compli-
ance with the generated instruction. Table 31 in Appendix D also
demonstrates that the LLMs are unable to conduct the compliance
evaluation task accurately and have a subtle preference for format
fi, calling for further studies.

4.3 Task 3: Compliant Response Generation

Inspired by real-world scenarios of conditional generations [3, 9, 15],
in Task 3, we investigate ToDs’ conditional response generation
abilities based on our predefined instructions.

4.3.1 Dataset. We examine TODs’ abilities to generate follow-up
responses given the previous conversation is already compliant with
provided instructions. We use the 3310 partial conversations from
the first step of the Task2 pipeline containing instruction-following
responses, dialogue histories, and corresponding instructions.

4.3.2 Results. We instruct the six LLMs to continue the conver-
sation while following the given instruction. In the prompt, we
decompose the problem to identify the steps the agent has followed,
select the next most relevant action based on the given instruction,
and generate a response that matches the instruction’s retrieved
action. We employ Claude3.7-Sonnet (the top-performing Task 2
LLM) as a judge to assess response quality and compliance without
ground-truth knowledge. Using its compliance classifications, we
calculate compliance rates for Task 3, where higher scores indicate
better consistent adherence to instructions.

Model EN FR DE ES ZH AR HI

Claude3.7-Sonnet 0.9529 0.9553 0.9535 0.9628 0.9616 0.9680 0.9622
Claude3.5-Sonnet-V2 0.9532 0.9505 0.9432 0.9544 0.9529 0.9559 0.9505
Claude3.5-Sonnet-V1 ~ 0.9254 0.9353 0.9344 0.9378 0.9375 0.9429 0.9390
Gemma3-27B-IT 0.8952 0.3130 0.3121 0.3009 0.3205 0.3278 0.3323
Llama3.3-70B 0.1435 0.4773 0.5773 0.3565 0.5227 0.3931 0.3834
Qwen3-14B 0.2269 0.2281 0.2254 0.2142 0.2326 0.2369 0.2375

Table 3: Task 3 compliance rate across models and conversation
languages (English (EN), French (FR), German (DE), Spanish (ES),
Chinese (ZH), Arabic (AR), Hindi (HI)) with instruction format f;.
The best result per language is bolded and the best result per model
is underlined.

Table 3 compares quality of LLMs’ generations using prior crite-
ria from given instructions. Larger LLMs exhibit higher compliance
rates than smaller LLMs, across conversation languages and instruc-
tion formats. Performance of all LLMs is not significantly impacted
by conversation language. The LLMs usually generate long utter-
ances, struggling to accurately identify one next action from the
instruction and exclusively cover that action. Instruction-following
generations may not be semantically similar to ground-truth re-
sponses, but Claude3.7-Sonnet may consider them compliant.

5 Conclusion

We apply complex condition-action natural language instructions
for ToDs to closely model the complexity of real world complex in-
structions. With these instruction documents and their application
to multilingual conversations, we propose three related tasks: in-
struction retrieval and next action prediction, instruction-following
evaluation, and compliant response generation. We publish bench-
marks for each task, showing that advanced LLMs still strive to
perform admirably in all tasks and with enhanced multilingual
capabilities for more challenging, fine-grained tasks. We plan to
extend TOD-ProcBench to additional dataset formats including
codified structures across domain-specific instructions.

Genaiecom °25, September 22, 2025, Prague, CZ

Acknowledgments

We would like to thank Leo Feldman for his invaluable guidance
and support in helping us adapt and leverage a system that he built
for efficient LLM inference.

References
[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

3

l6

=

fla

=

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020).

Derek Chen, Howard Chen, Yi Yang, Alexander Lin, and Zhou Yu. 2021. Action-
Based Conversations Dataset: A Corpus for Building More In-Depth Task-
Oriented Dialogue Systems. In Proceedings of the 2021 Conference of the NAACL:
Human Language Technologies, Kristina Toutanova, Anna Rumshisky, Luke Zettle-
moyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy
Chakraborty, and Yichao Zhou (Eds.). Association for Computational Linguistics,
Online, 3002-3017. doi:10.18653/v1/2021.naacl-main.239

Wenhu Chen, Jianshu Chen, Pengda Qin, Xifeng Yan, and William Yang Wang.
2019. Semantically Conditioned Dialog Response Generation via Hierarchical
Disentangled Self-Attention. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, Anna Korhonen, David Traum, and
Lluis Marquez (Eds.). Association for Computational Linguistics, Florence, Italy,
3696-3709. doi:10.18653/v1/P19-1360

Lei Cui, Shaohan Huang, Furu Wei, Chuangi Tan, Chaoqun Duan, and Ming
Zhou. 2017. SuperAgent: A Customer Service Chatbot for E-commerce Websites.
In Proceedings of ACL 2017, System Demonstrations, Mohit Bansal and Heng Ji
(Eds.). Association for Computational Linguistics, Vancouver, Canada. https:
//aclanthology.org/P17-4017

Ashley Lewis and Michael White. 2023. Mitigating harms of llms via knowledge
distillation for a virtual museum tour guide. In Proceedings of the 1st Workshop on
Taming Large Language Models: Controllability in the era of Interactive Assistants!

Zekun Li, Shinda Huang, Jiangtian Wang, Nathan Zhang, Antonis Antoni-
ades, Wenyue Hua, Kaijie Zhu, Sirui Zeng, Chi Wang, William Yang Wang,
and Xifeng Yan. 2025. SOPBench: Evaluating Language Agents at Follow-
ing Standard Operating Procedures and Constraints. arXiv:2503.08669 [cs.CL]

https://arxiv.org/abs/2503.08669

[7] Johannes EM Mosig, Shikib Mehri, and Thomas Kober. 2020. Star: A schema-

8

[10

[11]

[12]

[13

[14]

[15

guided dialog dataset for transfer learning. arXiv preprint arXiv:2010.11853 (2020).
Subhrangshu Nandi, Arghya Datta, Nikhil Vichare, Indranil Bhattacharya,
Huzefa Raja, Jing Xu, Shayan Ray, Giuseppe Carenini, Abhi Srivastava, Aaron
Chan, Man Ho Woo, Amar Kandola, Brandon Theresa, and Francesco Car-
bone. 2025. SOP-Bench: Complex Industrial SOPs for Evaluating LLM Agents.
arXiv:2506.08119 [cs.Al] https://arxiv.org/abs/2506.08119

Shashi Narayan, Joshua Maynez, Reinald Kim Amplayo, Kuzman Ganchev, Annie
Louis, Fantine Huot, Anders Sandholm, Dipanjan Das, and Mirella Lapata. 2023.
Conditional Generation with a Question-Answering Blueprint. Transactions of
the Association for Computational Linguistics 11 (2023), 974-996. doi:10.1162/tacl_
a_00583

Stefania Raimondo, Christopher Pal, Xiaotian Liu, David Vazquez, and Hector
Palacios. 2023. Improving Generalization in Task-oriented Dialogues with Work-
flows and Action Plans. arXiv preprint arXiv:2306.01729 (2023).

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav
Khaitan. 2020. Towards scalable multi-domain conversational agents: The schema-
guided dialogue dataset. In Proceedings of the AAAI conference on artificial intelli-
gence, Vol. 34.

Shamik Roy, Sailik Sengupta, Daniele Bonadiman, Saab Mansour, and Arshit
Gupta. 2024. FLAP: Flow-Adhering Planning with Constrained Decoding in
LLMs. In Proceedings of the 2024 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (Volume
1: Long Papers), Kevin Duh, Helena Gomez, and Steven Bethard (Eds.). Association
for Computational Linguistics, Mexico City, Mexico, 517-539. doi:10.18653/v1/
2024.naacl-long.29

Ivan Sekulic, Silvia Terragni, Victor Guimaraes, Nghia Khau, Bruna Guedes, Mod-
estas Filipavicius, Andre Ferreira Manso, and Roland Mathis. 2024. Reliable LLM-
based User Simulator for Task-Oriented Dialogue Systems. In Proceedings of the
1st Workshop on Simulating Conversational Intelligence in Chat (SCI-CHAT 2024),
Yvette Graham, Qun Liu, Gerasimos Lampouras, Ignacio Iacobacci, Sinead Mad-
den, Haider Khalid, and Rameez Qureshi (Eds.). Association for Computational
Linguistics, St. Julians, Malta, 19-35. https://aclanthology.org/2024.scichat-1.3
Sailik Sengupta, Zahra Zahedi, and Subbarao Kambhampati. 2019. To monitor or
to trust: observing robot’s behavior based on a game-theoretic model of trust. In
Proceedings of the Trust Workshop at AAMAS.

AB Siddique, Muhammad Hasan Magbool, Kshitija Taywade, and Hassan Foroosh.
2022. Personalizing task-oriented dialog systems via zero-shot generalizable
reward function. In Proceedings of the 31st ACM International Conference on

[16

(17]

oy
&

[19

[20]

Ghazarian et al.

Information & Knowledge Management. 1787-1797.

Zhongyu Wei, Qianlong Liu, Baolin Peng, Huaixiao Tou, Ting Chen, Xuan-Jing
Huang, Kam-Fai Wong, and Xiang Dai. 2018. Task-oriented dialogue system for
automatic diagnosis. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers). 201-207.

Bosi Wen, Pei Ke, Xiaotao Gu, Lindong Wu, Hao Huang, Jinfeng Zhou,
Wenchuang Li, Binxin Hu, Wendy Gao, Jiaxin Xu, Yiming Liu, Jie Tang, Hongn-
ing Wang, and Minlie Huang. 2024. Benchmarking Complex Instruction-
Following with Multiple Constraints Composition. arXiv:2407.03978 [cs.CL]
https://arxiv.org/abs/2407.03978

Dingjun Wu, Jing Zhang, and Xinmei Huang. 2023. Chain of Thought Prompting
Elicits Knowledge Augmentation. In Findings of the Association for Computational
Linguistics: ACL 2023, Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(Eds.). Association for Computational Linguistics, Toronto, Canada, 6519-6534.
doi:10.18653/v1/2023.findings-acl.408

Lin Xu, Ningxin Peng, Daquan Zhou, See-Kiong Ng, and Jinlan Fu. 2024. Chain of
Thought Explanation for Dialogue State Tracking. arXiv preprint arXiv:2403.04656
(2024).

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng
Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong
Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou,
Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao
Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin,
Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su,
Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui,
Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. 2025. Qwen3 Technical Report.
arXiv:2505.09388 [cs.CL] https://arxiv.org/abs/2505.09388

A Datasets

In this section, we present sample data from our proposed TOD-
ProcBench and related works.

https://doi.org/10.18653/v1/2021.naacl-main.239
https://doi.org/10.18653/v1/P19-1360
https://aclanthology.org/P17-4017
https://aclanthology.org/P17-4017
https://arxiv.org/abs/2503.08669
https://arxiv.org/abs/2503.08669
https://arxiv.org/abs/2506.08119
https://arxiv.org/abs/2506.08119
https://doi.org/10.1162/tacl_a_00583
https://doi.org/10.1162/tacl_a_00583
https://doi.org/10.18653/v1/2024.naacl-long.29
https://doi.org/10.18653/v1/2024.naacl-long.29
https://aclanthology.org/2024.scichat-1.3
https://arxiv.org/abs/2407.03978
https://arxiv.org/abs/2407.03978
https://doi.org/10.18653/v1/2023.findings-acl.408
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388

TOD-ProcBench: Benchmarking Complex Instruction-Following in Task-Oriented Dialogues

Genaiecom ’25, September 22, 2025, Prague, CZ

ABCD (Task: Policy and Return Due to Size)

search-fag — search-policy — select-faq
pull-up-account — validate-purchase — membership — enter-details — update-order

Table 4: Example of instructions in ABCD.

TOD-ProcBench (Task: Policy and Return Due to Size)

If customer wants to know the return policy:
- Ask for customer's membership level (gold, silver, bronze, guest)
- If gold:
- Allow unlimited returns
- If silver:
- Allow returns for purchases made in the last 6 months
- If bronze:
- Allow returns for purchases made in the last 90 days
- If guest:
- Allow returns for purchases made in the last 30 days
If customer wants to return an item due to wrong size:
- Ask for customer's full name or account ID
- Ask for username, email address, and order ID to validate purchase
- Ask for membership level (guest, bronze, silver, gold)
- If membership is guest:
- If purchase was within last 30 days or customer has receipt/original packaging:
- Allow return
- Else:
- Deny return
- If membership is bronze:
- If purchase was within last 90 days or customer has receipt/original packaging:
- Allow return
- Else:
- Deny return
- If membership is silver:

- If purchase was within last 6 months or customer has receipt/original packaging:

- Allow return
- Else:
- Deny return
- If membership is gold:
- Allow unlimited returns
- If return is allowed:
- Ask for customer's full address to generate shipping label
- Ask how customer wants to process return (by mail, in store, drop off center)
- Provide shipping label and return instructions

Table 5: Example of instructions in TOD-ProcBench.

Genaiecom °25, September 22, 2025, Prague, CZ Ghazarian et al.

SGD (Task: Flights_1)

description: Find your next flight
slots: [passengers, seating_class, origin_city, destination_city, origin_airport, ...]
slot: seating class
description: Seating class for the booking
is_categorical: true
possible_values: [Economy, Premium Economy, Business, First Class]
intents: [SearchOnewayFlight, SearchRoundtripFlights, ReserveOnewayFlight, ReserveRoundtripFlights]
intent: ReserveOnewayFlight
description: Reserve a one-way flight
is_transactional: True
required_slots: [origin_city, destination_city, airlines, departure_date]
optional_slots: [refundable, passengers, seating_class]

Table 6: Example of instructions in SGD.

STAR (Task: book_doctor_appointment)

graph: Hello — ask_name — ask_doctor_name — ask_day — ask_start_time — ask_symptoms — query_check
available — inform_booking_available
unavailable — inform_booking_unavailable
yes — query_book
no — ask_doctor_name
query_book — doctor_inform_booking_successful — inform_booking_successful

Table 7: Example of instructions in STAR.

Taskname: Poliy generation

et

Tt

G o eyt
USTOER o o s st
STNER st i

AT gehneallaeor e 7yt et st

U gty
AR

vty

bl ey

P T T —————p
Qs e ko >

SGBT el ety kg e,

TR

i ey

TR oo

e

Figure 3: User interface for collecting human annotation on the quality of the generated instructions.

TOD-ProcBench: Benchmarking Complex Instruction-Following in Task-Oriented Dialogues Genaiecom 25, September 22, 2025, Prague, CZ

ABCD Conversation

agent: hi. how can i help you?

customer: hello, i would like to check on the shipping status for my order as i have yet to receive it
agent: ok

agent: can you tell me your name, your account id, and the order id from the order?
customer: joseph banter, <account> , <order_id>

action: account has been pulled up for joseph banter.

action: identity verification in progress ...

agent: ok, what is your username and email address?

customer: <username> , <email>

action: purchase validation in progress ...

action: querying the system for an answer ...

agent: your order is still on track and on the way

customer: i have been waiting 9 days for it

customer: i think it might be lost, anyway i can get it resent?

agent: yes, it can be resent

agent: can you tell me your address

customer: <street_address> brighton, ny <zip_code>

action: order has been updated with <street_address> brighton, ny <zip_code>.
agent: ok, what is the brand and the type of product?

customer: michael kors jeans

action: a purchase of michael kors jeans was made.

agent: ok, the jeans have been resent

customer: thank you

ABCD workflow

pull-up-account, verify-identity, validate-purchase, ask-the-oracle, update-order, make-purchase

Examples of Task1 inputs

1. Partial Conversation:

agent: hi. how can i help you?

customer: hello, i would like to check on the shipping status for my order as i have yet to receive it
agent: ok

agent: can you tell me your name, your account id, and the order id from the order?

customer: joseph banter, <account> , <order_id>

agent: ok, what is your username and email address?

customer: <username> , <email>

1. Next Action: validate-purchase

2. Partial Conversation:

agent: hi. how can i help you?

customer: hello, i would like to check on the shipping status for my order as i have yet to receive it
agent: ok

agent: can you tell me your name, your account id, and the order id from the order?
customer: joseph banter, <account> , <order_id>

agent: ok, what is your username and email address?

customer: <username> , <email>

agent: your order is still on track and on the way

customer: i have been waiting 9 days for it

customer: i think it might be lost, anyway i can get it resent?

agent: yes, it can be resent

agent: can you tell me your address

customer: < street_address> brighton, ny <zip_code>

agent: ok, what is the brand and the type of product?

customer: michael kors jeans

2. Next Action: make-purchase

Table 8: Examples of Task 1 benchmark.

Genaiecom °25, September 22, 2025, Prague, CZ Ghazarian et al.

Fine-Grained Parameter Mismatch

Conversation

“agent: hello. thanks for contacting the customer satisfaction team, how may i help you today?"
“customer: hi i never got my stuff i ordered. can you check it for me?"

“agent: it’d be my pleasure to look into that for you. may i start by getting your full name?"
“customer: sanya afzal"

Instructions

If customer has not received their order:
If it has been less than 7 days since order was placed:
- Inform customer that orders can take up to 7 days to arrive
- Advise customer to wait a few more days and contact again if order still has not arrived after 7 days
If it has been 7 days or more since order was placed:
- Apologize for the delay
- Verify customer's address
- Place a new order to be shipped to the customer
- If order was placed a very long time ago (e.g. months)
- Offer to expedite or overnight the new shipment

Compliant Response
“agent: okay sanya, what item were you expecting and when were you expecting it to be delivered?"

Instruction-Violating Response (fine-grained parameter mismatch)
“agent: Orders can sometimes take up to 11 business days to be delivered after being shipped. Let me know if you still have not received your order
after 11 days and I'd be happy to look into it further for you."

Table 9: Example of a instruction-violating response resulting from the proposed compliance manipulation approach with
fine-grained parameter mismatch.

TOD-ProcBench: Benchmarking Complex Instruction-Following in Task-Oriented Dialogues Genaiecom 25, September 22, 2025, Prague, CZ

Single-Condition Action Replacement

Conversation

“agent: hi! how can i help you today?"

“customer: hi! i need to return this jacket. it is the wrong size"

“agent: no problem. can i have your full name, username, email address, and order id, please?"
“customer: alessandro phoenix”

“customer: <username> <username>@email.c <email> <order_id>"

“agent: and what is your membership level?"

“customer: gold"

“customer: sanya afzal"

Instructions
If customer wants to return an item due to wrong size:
- Ask for customer's full name or account ID
- Ask for username, email address, and order ID to validate purchase
- Ask for membership level (guest, bronze, silver, gold)
- If membership is gold:
- Allow unlimited returns

- If return is allowed:
- Ask for customer's full address to generate shipping label
- Ask how customer wants to process return (by mail, in store, drop off center)

- Provide shipping label

Compliant Response
agent: okay, great! what is your address? i’ll need it for the shipping label.

Instruction-Violating Response (single-condition action replacement)
I see your membership level is gold. Unfortunately, our policy does not allow unlimited returns for gold members. Could you please provide more

details on why you need to return this item? I will review the return request based on the return policy.
Table 10: Example of a instruction-violating response resulting from the proposed compliance manipulation approach with

single-condition action replacement.

Genaiecom °25, September 22, 2025, Prague, CZ Ghazarian et al.

Multi-Condition Action Replacement

Conversation

“agent: hello, thanks for contacting acmebrands. how can i help today?"

“customer: hi, this is albert sanders, gold member"

“customer: i have a premium subscription with acme brands, but i’m having a bit of trouble finding my account details"
“agent: i see, are you needing help accessing your account?”

“customer: yes, well, really i just want to know when my annual fee is due. i can pay it today if there’s anything outstanding”

“action: account has been pulled up for albert sanders."

Instructions
If customer wants to check subscription status:
- Ask for customer's full name, account ID, and order ID
- Verify customer's identity
- Check subscription status in the system
- If subscription is active:
- Provide due date and amount due

Compliant Response
“agent: do you have your account id and order id albert?"

Instruction-Violating Response (multi-condition action replacement)
“agent: According to our records, your annual subscription fee of $ 50 is due on March 1st. Let me check the status of your subscription in our system

to confirm the details."
Table 11: Example of a instruction-violating response resulting from the proposed compliance manipulation approach with

multi-condition action replacement.

TOD-ProcBench: Benchmarking Complex Instruction-Following in Task-Oriented Dialogues

Genaiecom ’25, September 22, 2025, Prague, CZ

Conversation

“turn 0: agent: hello, thanks for contacting acmebrands. how can i help today?"

“turn 1: customer: hi, this is albert sanders, gold member"

“turn 2: customer: i have a premium subscription with acme brands, but i’'m having a bit of trouble finding my account details"

“turn 3: agent: i see, are you needing help accessing your account?"

“turn 4: customer: yes, well, really i just want to know when my annual fee is due. i can pay it today if there’s anything outstanding”

“turn 5: action: account has been pulled up for albert sanders"

Instructions
If customer wants to check subscription status:
- Ask for customer's full name, account ID, and order ID
- Verify customer's identity
- Check subscription status in the system
- If subscription is active:
- Provide due date and amount due
- If amount is due today or past due:

- Offer to take payment with card on file or new card

- Process payment if customer wants to pay
- If subscription is inactive:
- Provide amount due and due date to reactivate
- Offer to take payment with card on file or new card
- Process payment if customer wants to reactivate

Ground-Truth Response
“turn 6: agent: do you have your account id and order id albert?"

Extracted Original Instruction Section

If customer wants to check subscription status:
- Ask for customer's full name, account ID, and order ID
- Verify customer's identity

Manipulated Instructions

If customer wants to check subscription status:
- Provide due date and amount due
- Check subscription status in the system

Instruction-Violating Response

“turn 6: agent: According to our records, your annual subscription fee of $50 is due on March 1st. Let me check the status of your subscription in our

system to confirm the details."

Table 12: Example 1 of conversations with manipulated instructions and instruction-violating agent responses.

Genaiecom °25, September 22, 2025, Prague, CZ Ghazarian et al.

Conversation

“turn 0: agent: hello, how may i help you?",

“turn 1: customer: i noticed my phone number was wrong and i need to fix it.",

“turn 2: agent: let me help you with that.,

“turn 3: agent: so you just want to change the phone number on your account is that correct?",
“turn 4: customer: that’s correct.,

“turn 5: agent: could i have your full name or account id?",

“turn 6: customer: albert sanders",

“turn 7: action: account has been pulled up for albert sanders"

Instructions

If customer wants to change their phone number:
- Get customer's full name or account ID
- Pull up customer's account
- Get current phone number listed on the account
- Verify customer's identity by asking for 2-3 of the following:
- Zip code
- Pin number
- Username
- Password
- Email address
- Previous order ID
- If identity is verified:
- Get new phone number from customer
- Update account with new phone number
- If identity cannot be verified:
- Politely inform customer you cannot update account without proper verification
- Offer to try verifying again or suggest customer contact support another way

Ground-Truth Response
“turn 8: agent: could i have the current phone number on your account?"

Extracted Original Instruction Section
If customer wants to change their phone number:
- Get customer's full name or account ID
- Pull up customer's account
- Get current phone number listed on the account

Manipulated Instructions
If customer wants to change their phone number:
- Get customer's full name or account ID
- Pull up customer's account
- Do not get current phone number listed on the account

Instruction-Violating Response
“turn 8: agent: I've pulled up your account, Albert. What new phone number would you like me to update it with?"

Table 13: Example 2 of conversations with manipulated instructions and instruction-violating agent responses.

TOD-ProcBench: Benchmarking Complex Instruction-Following in Task-Oriented Dialogues

B Complex Instruction Formats in
TOD-ProcBench
In this section, we present a symbolic and natural language example

of each of the three complex instruction formats, fi (Figure 4), f>
(Figure 5), f3 (Figure 6), in TOD-ProcBench.

Let C be the set of all conditions and A be the set of all actions.

For a nested structure with depth d, each flattened condition-action
pair is defined as:

Genaiecom ’25, September 22, 2025, Prague, CZ

(Cn,an) € {(c1 A Acg, (a1, ...am))|cj € C,ap € A}

where C,, = ¢1 A ... A ¢ represents a conjunction of composite
conditions, and a, = (ay, ..., am) represents a sequence of actions
that must be executed when C,, is satisfied.

For example, the nested structure in fi

If C1:
ai

If Cy:

as

a4
az
If C3:
as

is flattened in f; to:
{(c1,€a1)), (c1 A ¢z, as, as)), (c1, {az)), (c3, {as)) }

A flattened structure in fa {(c1, (a1, a2))} is then transformed in
3 to {“conditions” : [c1], “actions” : [a1,az2]}.

Genaiecom °25, September 22, 2025, Prague, CZ Ghazarian et al.

<What_to_do>
If customer received an email confirmation showing incorrect quantity
of items ordered:
- Identify customer by asking for full name or account ID
- Get order ID from customer
- Verify customer's identity
Check system records to confirm actual quantity ordered
If email was incorrect:
- Inform customer of the correct quantity
ordered based on system records
- If order has already shipped:
- Check shipping status
- If delivered, start return process for extra item(s)
- If not delivered yet, inform customer to contact again after
receiving to initiate return
- Offer refund for extra item(s) charged
- If email was correct:
- Explain reason for extra item(s) if possible
- Start return process if applicable
</What_to_do>

Figure 4: Example of a TOD-ProcBench instruction document in format f;.

TOD-ProcBench: Benchmarking Complex Instruction-Following in Task-Oriented Dialogues

<What_to_do>
If customer received an email confirmation showing incorrect quantity
of items ordered:

- Identify customer by asking for full name or account ID

- Get order ID from customer

- Verify customer's identity

- Check system records to confirm actual quantity ordered

If customer received an email confirmation showing incorrect quantity
of items ordered
AND email was incorrect:

- Inform customer of the correct quantity ordered based on

system records

If customer received an email confirmation showing incorrect quantity
of items ordered
AND email was incorrect AND order has already shipped:

- Check shipping status

If customer received an email confirmation showing incorrect quantity

of items ordered

AND email was incorrect AND order has already shipped AND delivered:
- Start return process for extra item(s)

If customer received an email confirmation showing incorrect quantity
of items ordered

AND email was incorrect AND order has already shipped AND not delivered yet:

- Inform customer to contact again after receiving to initiate return

If customer received an email confirmation showing incorrect quantity
of items ordered
AND email was incorrect:

- Offer refund for extra item(s) charged

If customer received an email confirmation showing incorrect quantity
of items ordered
AND email was correct:
- Explain reason for extra item(s) if possible
- Start return process if applicable
</What_to_do>

Genaiecom ’25, September 22, 2025, Prague, CZ

Figure 5: Example of a TOD-ProcBench instruction document in format f;.

Genaiecom °25, September 22, 2025, Prague, CZ

<What_to_do>
r

"Conditions": [
"customer received an email confirmation showing incorrect quantity of
items ordered"
1,
"Actions": [
"Identify customer by asking for full name or account ID",
"Get order ID from customer",
"Verify customer's identity",
"Check system records to confirm actual quantity ordered”

]
3,
{
"Conditions": [
"customer received an email confirmation showing incorrect quantity of
items ordered",
"email was incorrect"”
1,
"Actions": [
"Inform customer of the correct quantity ordered based on system records"
]
3
{
"Conditions": [
"customer received an email confirmation showing incorrect quantity of
items ordered",
"email was incorrect",
"order has already shipped"
1,
"Actions": [
"Check shipping status"
]
3

"Conditions": [
"customer received an email confirmation showing incorrect quantity of
items ordered",
"email was incorrect",
"order has already shipped",
"delivered"
1,
"Actions": [
"Start return process for extra item(s)"
]
3,
{
"Conditions": [
"customer received an email confirmation showing incorrect quantity of
items ordered",
"email was incorrect",
"order has already shipped",
"not delivered yet"
1,
"Actions": [
"Inform customer to contact again after receiving to initiate return"
]
3,
{

"Conditions": [
"customer received an email confirmation showing incorrect quantity of
items ordered",
"email was incorrect"
1,
"Actions": [
"offer refund for extra item(s) charged"
]
3,
{
"Conditions": [
"customer received an email confirmation showing incorrect quantity of
items ordered",
"email was correct"”
1,
"Actions": [
"Explain reason for extra item(s) if possible",
"Start return process if applicable"
]
}
]
</What_to_do>

Figure 6: Example of a TOD-ProcBench instruction document in format f3.

Ghazarian et al.

TOD-ProcBench: Benchmarking Complex Instruction-Following in Task-Oriented Dialogues Genaiecom 25, September 22, 2025, Prague, CZ

C LLM Prompts

In this section, we present key prompts used for creating TOD-
ProcBench and evaluating LLMs for each task.

Genaiecom °25, September 22, 2025, Prague, CZ Ghazarian et al.

Instruction Generation LLM System Prompt (Part 1)

Conversation

You are given a set of conversations between a customer and an agent. In all of the conversations the customer has a specific intent from the interaction
with the agent. You are asked to read all the conversations in <conversations> tags for the specified intent in <intent> tag and generate a policy that
the agent has followed to complete all the conversations in <conversations> tag.

hint: your generated policy should contain only one section in <what_to_do> tags and one <what_to_say> tags.

Here is a template for the policy that you are asked to generate. Each template has to have two sections:

1. What to do in <What_to_do> tags which shows some conditional statements and the steps to accomplish the task. You can specify each condition
with ’if” and then have the condition and what needs to be done for that condition. Try to provide all details as an example directly mention different
membership levels and the return dates for each level accordingly.

2. What to say in <What_to_say> tags which shows what are the important utterances that the agent has to say to accomplish all the defined steps in
the what to do part.

{continued in Table 15}

Table 14: LLM system prompt (Part 1) to generate an instruction document given the set of conversations with similar user
intents.

TOD-ProcBench: Benchmarking Complex Instruction-Following in Task-Oriented Dialogues Genaiecom 25, September 22, 2025, Prague, CZ

Instruction Generation LLM System Prompt (Part 2)

{continued from Table 14}

height
<example>

Here is an example of a policy for the following conversation in <example_conv> tag:
<example_conv>

"agent: hello, how are you today? how can i help you?",

"customer: i did a return but i don't want to get my refund as a gift card.",
"agent: can i please get your full name and account id?",

"customer: my name is [namel] but i'm not sure about the account id",

"agent: you are looking to get check instead of gift card?",

"customer: yes",

"action: account has been pulled up for [namel]",

"agent: what is your membership level",

"customer: gold",

"action: membership level of has been noted.",

"agent: since your are a gold member we can refund you via the check. Do you want to use your existing bank account?",
"customer: yes, thanks",

"action": changes have been entered.

"agent: no problem! is there anything else i can help you with, sanya?",

"customer: that will be all",

"agent: perfect. you have a nice day. goodbye!"

</example_conv>

Policy for this conversation is:
<What_to_do> height
If customer wants to get check instead of gift card:
-If membership level is Gold or Silver:
- Allow the request
- Ask for the account info if you do not have
- Process the request
-If membership level is guest or bronze:
- if the refund has been initiated in 30 days:
- Allow the request and ask for the account info and process it
- if not:
- Inform customer request cannot be processed
</What_to_do>

<What_to_say>
- Ask for customer's full name or account ID
- Check membership level
- Check refund initiated date based on membership level
- If the changing request is eligible:
-Ask customer's bank account info if it does not exist.
-Ask if customer wants to use existing bank account it if exists.
-If the request is not eligible:
- Politely inform customer request cannot be processed and explain reasoning
- Apologize for inconvenience
- Offer to help with anything else
</What_to_say>

</example>

Table 15: LLM system prompt (Part 2) to generate an instruction document given the set of conversations with similar user
intents.

Genaiecom °25, September 22, 2025, Prague, CZ Ghazarian et al.

Instruction Generation LLM User Prompt

Conversation
Here is the intent and all the conversations. Read all of them carefully and generate the policy accordingly.

<intent> intent </intent>
<conversations>
conversations
</conversations>

The best policy for the given conversations is:

Table 16: LLM user prompt to generate an instruction document given the set of conversations with similar user intents.

Complex Instruction Format Conversion LLM Prompt

Convert nested conditional statements into two formats which should represent the same meaning in different formats:

1. A flattened text format where each line starts with a condition and lists actions to take

2. A flattened JSON format with an array of objects, each containing "conditions" and "actions" arrays

GENERAL INSTRUCTIONS:

- Identify all decision points and actions in the nested structure

- The entries for conditions and actions in each format must use the same natural language from the original input.

- Maintain all the original logic and relationships between conditions and actions

- Consecutive entries in the flattened formats should NOT have the exact same list for conditions. This effectively means that all condition-action pairs
that are neighbors must have different lists for conditions. If the same list is used (same entries in the list or same empty list which specifically denotes
in all cases) for conditions in pairs that are consecutive, then combine all such consecutive pairs to only have one unique list of conditions and all
corresponding actions in the same original sequence.

- The expectation is that a user of these flattened instructions will read them in order from top-down, first to last, evaluating each condition and if true
executing the associated action(s). As such, your flattening must be recursive and preserve the same order of actions executed if the user were to
follow the original SOP.

- Process each section separately if multiple sections are provided

INSTRUCTIONS for flattened text format:

- Each line should start with "If [condition]:" followed by indented actions

- When a condition depends on previous conditions, use "AND" to combine them (e.g., "If condition1 AND condition2:")

- For actions that apply in all cases, use "In all cases:" as the condition

INSTRUCTIONS for flattened json format:

- Represent each condition-action pair as "conditions": [...], "actions": [...]

- For actions that apply in all cases, use an empty list [] as the condition

You might find it easier to generate the flattened text format first and then generate the equivalent flattened json format. The motivation here is to
flatten the nested hierarchy of conditional statements so that one can simply go down the list from the first line in a flattened format to the last line in
a flattened format and only execute actions corresponding to conditional statements that are true.

Please convert this into both flattened formats and provide your output.

Input:
{
"intent": ...,
"what to_do": ..,
"what_to_say": ...
}

Provide a single dictionary so that json.loads() can parse your perfectly formatted response. Your final response should be a json with the following
keys (note that the first 3 keys are the same as original input and the values should be preserved as well):

" on "o "o

"intent" "what_to_do", "what_to_say", "flattened_text_what_to_do", "flattened_text_what_to_say", "json_what_to_do", "json_what_to_say"

Table 17: LLM prompt to convert complex instruction format from f to f; and f;.

TOD-ProcBench: Benchmarking Complex Instruction-Following in Task-Oriented Dialogues Genaiecom 25, September 22, 2025, Prague, CZ

Multilingual Conversation Translation LLM Prompt

Translate this conversation from english to target_language. For both the agent and customer, use the native conversation style. However, the tone
and formality should match the tone and formality for each role respectively in the original English conversation. This means, for the agent, the tone
should be professional and the formality should be formal, even if the customer seems to be speaking informally. respect the masculine and feminine
assignments of vocabulary in the target language. The output format should be the same as the input conversation: A string with turns separated by
\n exactly as done in the input transcript of the conversation, representing either the "agent" or "customer" speaking, with the actual dialogue text in
the target language. Avoid using English except for the role names as explained below or placeholders indicated in the conversation. The roles in the
conversation list should still be represented as "agent" or "customer". Only respond with this conversation transcript string and nothing else.
Original english conversation transcript: conversation

Translated conversation transcript:

Table 18: LLM prompt to translate conversations in TOD-ProcBench.

Multilingual Conversation Translations LLM Judge Prompt

Evaluate the translation quality of the translated language conversation with respect to the original English conversation and answer three questions
with Yes or No:

English conversation: english_conversation

Translated conversation: translated_conversation

Please only provide your answers as three comma-separated Yes/No responses to the following questions and do not provide anything else in your
answer:

1. Overall, did the translated conversation preserve the same meaning in each agent/customer turn as the original English conversation?

2. Overall, did the sentiment, tone, and formality of each agent/customer turn in the translated conversation match the respective agent/customer turn
in the original English conversation?

3. Except for placeholder text or technical terms which do not have proper translations to the target language, is there any use of English in the
translated text?

Table 19: LLM-as-a-Judge prompt to evaluate the quality of translated conversations in TOD-ProcBench.

Genaiecom °25, September 22, 2025, Prague, CZ Ghazarian et al.

LLM System Prompt for Task 1

You are given a part of conversation between a customer and an agent in <conversation> tag. In addition, you are given a set of policies in <policies>
tag including “what_to_do" and “what_to_say" that are instructed to an agent to follow in its interaction with the customer to solve customer’s
provided issue.

You are also given a list of actions in <actions> that shows agent’s next action to conduct in each point of the conversation.

Each line in <actions> shows one possible agent’s action and the conditions necessary to select that action. The conditions are based on what
customer has asked and looked for in the last turns of the conversation. In order to select the agent’s next action you need to pay attention to the last
agent’s and customer’s turns from the conversation in <conversation> tags.

Your task is as following:

get the two most relevant policies:

1) read all the policies carefully

2) for the given conversation select the two most matching and relevant policies based on the customer’s intent from the interaction. Your selected
policies should meet both of the following conditions.

a) policies state has user’s provided intent or problem as an “if" condition.

b) policies include the steps that agent has followed in its interaction in the conversation to solve the problem.

get agent’s next action:

1)read all the list of actions in <actions> and the conditions necessary to select each action.

2)read only the last agent and customer turns from <conversation>

3)find the most similar action from <actions> tag by comparing customer’s last turn from conversation and each action’s condiditon from <actions>.
Look into following examples for identifying next agent’s action.

<examples>

<example>

<conversation>

“agent: hi! how can i help you?",

“customer: i’d like to know why i was charged twice for my subscription.,

“agent: sure, sorry about that, let me take a look",

“agent: may i have your name please?",

“customer: joseph banter”,

“agent: thanks, and your account id and order id please?",

“customer: account id: <account_id>",

“customer: order id: <order_id>",

“agent: thanks! do you know your membership level?”,

“customer: guest",

<conversation>

<reason> To get the agent’s next action we pay attention to the last agent’s and customer’s turns in the <conversation> which is “thanks! do you
know your membership level?" and “guest” where the agent has asked customer about her membership status and customer has provided it. It is
exactly similar to what triggers “membership" action in <actions> tag that is “agent has asked customer about her membership status and customer
has provided her membership level". Therefore the agent’s next action is “membership".

<reason>

<example>

</examples>

Start your generation first by providing a reasoning of why you have selected the agent’s next action (similar to provided examples) and the two most
relevant policies in <reason> tags. Then return one <output> tag that includes THREE piece of information: the most relevant next action from
<actions> and two most relevant policies from <policies> all separated by “". The format of the output should be your provided reason in <reason>
tags and then <output>a,n,m</output> without any nextline character where a is the most relevant next action from <actions> tag that agent

should do given the last agent and customer turns in the conversation, n and m are the most relevant policies to the conversation.

Table 20: LLM system prompt for Task1.

TOD-ProcBench: Benchmarking Complex Instruction-Following in Task-Oriented Dialogues Genaiecom 25, September 22, 2025, Prague, CZ

List of policies: <policies> policies </policies>

List of next actions:

<actions>

search-policy: in the last customer turn from given <conversation> customer has asked policy related questions but agent has not searched the policy
and provided info yet.

make-password: in the last customer turn from given <conversation> customer has forgotten her password and customer answered to the agent’s
security questions to make new password but agent has not made the password yet.

enter-details: in the last customer turn from given <conversation> customer has provided personal information such as pin, address, email, order id and
etc that agent has asked. Agent next will enter those details or agent directly mentions that is going to note those details.

membership: in the last customer turn from given <conversation> customer has provided her membership status since the agent has asked about.
notify-team: in the last turn from given <conversation> agent has collected customer’s issue and promised customer that is going to notify someone
regarding that issue.

make-purchase: in the last customer turn from given <conversation> customer has requested agent to create a new order.

search-pricing: in the last customer turn from given <conversation> customer has requested to know about price of something and agent has not
provided the price yet.

record-reason: in the last customer turn from given <conversation> customer has complained about some issue and mentioned the reason of that issue.
search-shirt: in the last customer turn from given <conversation> customer had question relevant to shirt and agent has not searched about shirt yet.
search-jacket: in the last customer turn from given <conversation> customer had question relevant to jacket and agent has not searched about jacket yet.
search-jeans: in the last customer turn from given <conversation> customer had question relevant to jeans and agent has not searched about jeans yet.
search-boots: in the last customer turn from given <conversation> customer had question relevant to boots and agent has not searched about boots yet.
search-timing: in the last customer turn from given <conversation> customer had question relevant to timing such as hours, due date and questions
with 'when’ and agent has not searched it to get answer yet.

promo-code: in the last customer turn from given <conversation> customer wanted to get a new promo code or agent has suggested to create promo-code
to keep the customer happy and customer agreed. This action in only regarding creating new promo-code not other promo-code related requests.
log-out-in: in the last customer turn from given <conversation> customer has told about some issue and agent still has not provided logging-in and out
as a solution.

shipping-status: in the last customer turn from given <conversation> customer has provided shipping status of the order to the agent.

offer-refund: in the last customer turn from given <conversation> customer has provided information such as the item brand, its cost to get a refund
from agent since agent has suggested to give refund to the customer.

validate-purchase: in the last customer turn from given <conversation> customer has provided some order relevant information such as order id,
account id to retrieve and validate whether there was such an order.

instructions: in the last customer turn from given <conversation> customer has talked about some issue but agent has not yet looked for some instruction
and solutions such as how clearing cookies on browser.

search-membership: in the last customer turn from given <conversation> customer has asked questions regarding different memberships and agent
has not explained those search and has not provided information about membership levels.

select-faq: in the last customer turn from given <conversation> customer has asked questions and agent has not done the search yet and also has not
selected faq pages yet to answer those questions.

try-again: in the last customer turn from given <conversation> customer has talked about some issue and agent has suggested to recheck and redo some
actions to make sure the issue still persists.

pull-up-account: in the last customer turn from given <conversation> customer has provided her personal information such as name, and agent has not
used it yet to pull up customer’s account.

subscription-status: in the last customer turn from given <conversation> customer has provided her account but agent has not looked for the customer’s
subscription status yet.

search-faq: in the last customer turn from given <conversation> customer has asked a question and the agent has not searched and has not looked into
faq to answer the question.

send-link: in the last customer turn from given <conversation> customer has provided her email such that agent can send a link to provide further
information or as a receipt but agent has not sent the link yet.

update-account: in the last customer turn from given <conversation> customer has asked for changing some information such as credit card, subscription
status, ... and agent has not updated them yet or agent has not applied some changes such as extension yet.

update-order: in the last customer turn from given <conversation> customer has provided new information regarding the order and agent has not used
them to change and update item, its address and etc yet.

ask-the-oracle: in the last customer turn from given <conversation> customer has provided some claim and agent needs to check the system and look
into the validity of customer’s provided claim and order/return/refund details. ask-the-oracle usually happens when customer has already provided all her
personal information and agent completely knows about the customer and her situation.

verify-identity: in the last customer turn from given <conversation> customer has provided her identity by telling the account id, email, phone and etc.
Right after providing identity information agent should conduct verify-identity action.

empty: in the last customer turn from given <conversation> customer has no further requests or the agent’s next action does not match with any of the
previous actions or the customer has already achieved her goal meaning that agent does not have next action.

</actions>

<conversation> conv </conversation>

Table 21: LLM user prompt for Task1.

Genaiecom °25, September 22, 2025, Prague, CZ Ghazarian et al.

LLM System Prompt for Task 2 Approach 1

You are given a part of conversation between a customer and an agent in <conversation> tags, where customer interacts with the agent for a specific
intent. In addition, you are given the policy in <policy> tags that agent needs to follow in order to help the customer meet her intent alongside the
agent’s next utterance in <response> tag.

Your task is to identify whether the agent’s next response has followed the policy or not in other word whether the agent’s next response is compliant
with the policy or not. In order to assess the compliance of the agent’s next response, you need to specify according to the given conversation which
part of the policy is the conversation right now and according to the policy what is the next best action to choose from. The agent’s next response
should be compliant with that action from the policy and provides next steps in a correct order following the policy. If the next action provided in the
agent’s next response is not exactly the next step coming from the policy label that response as not compliant.

Look into following examples:

Examples

Example 1

<conversation>
turn @: agent: hi! thanks for contacting acme support. how can i help you today?

turn 1: customer: starting to wonder if my package might not be lost

turn 2: agent: sorry to hear that.

turn 3: customer: been 5 days since i've ordered and haven't gotten it
turn 4: agent: let's see what we can find out.

turn 5: agent: may i have your full name?

turn 6: customer: joseph banter

turn 7: customer: the order in question were calvin klein boots <order_id>
turn 8: agent: one moment mr. banter.

turn 9: agent: okay, can i get your username and email address?

turn 10: customer: <username>

turn 11: customer: <email>

turn 12: agent: got it, thanks.

turn 13: agent: hmm, and you say you've been waiting 5 days for your item?
turn 14: customer: that's right

turn 15: customer: dunno if it's time to consider it lost or what
</conversation>

<response>
turn 16: agent: typically, we wait three weeks until we take that type of action.
</response>

<policy>
- Ask for customer's full name, username, email address, and order ID to validate the purchase
- Check how many days the customer has been waiting for the order
- If less than 7 days, explain that orders can sometimes take up to 7 days and ask for patience
- If 7 days or more, apologize for the delay and let them know you will resend the order

- Ask for their current mailing address to send the new order

- Confirm the brand, product type, and any other details about the missing item

- Let them know a replacement order has been placed and provide an estimate on when it will arrive
- Offer further assistance or ask if there is anything else needed
- Thank the customer for their patience and understanding
</policy>

<reason>

since the <response> response has provided three weeks as a deadline to wait to receive the order
while in the policy it is 7 days therefore the response is not compliant with the policy.
</reason>

<compliant>

no

</compliant>

Instructions

First provide reasoning of how did you assess the compliance of the agent’s next response to the policy in <reason> tag and then generate the output
in <compliant> tag. Generate “yes” as the output if the next agent’s response is compliant with policy and “no” otherwise.

Table 22: LLM system prompt for Task 2 Approach 1.

TOD-ProcBench: Benchmarking Complex Instruction-Following in Task-Oriented Dialogues Genaiecom 25, September 22, 2025, Prague, CZ

LLM System Prompt (Part 1) for Task 2 Approach 2

You are given a part of conversation between a customer and an agent in <conversation> tags, where customer interacts with the
agent for a specific intent. In addition, you are given the policy in <policy> tags that agent needs to follow in order to help the
customer meet her intent alongside the agent’s next utterance in <response> tag. Your task is to identify whether the agent’s next
response has followed the policy or not in other word whether the agent’s next response is compliant with the policy or not. In order
to assess the compliance of the agent’s next response, you need to first generate the most relevant policy to the given conversation +
response and then compare whether the generated policy is some part of the overall given policy or not. Look into following examples:

Example 1

<conversation>

turn @: agent: hi! thanks for contacting acme support. how can i help you today?
turn 1: customer: starting to wonder if my package might not be lost

turn 2: agent: sorry to hear that.

turn 3: customer: been 5 days since i've ordered and haven't gotten it
turn 4: agent: let's see what we can find out.

turn 5: agent: may i have your full name?

turn 6: customer: joseph banter

turn 7: customer: the order in question were calvin klein boots <order_id>
turn 8: agent: one moment mr. banter.

turn 9: agent: okay, can i get your username and email address?

turn 10: customer: <username>

turn 11: customer: <email>

turn 12: agent: got it, thanks.

turn 13: agent: hmm, and you say you've been waiting 5 days for your item?
turn 14: customer: that's right

turn 15: customer: dunno if it's time to consider it lost or what
</conversation>

<response>

turn 16: agent: typically, we wait three weeks until we take that type of action.
</response>

{continued in Table 24}

Table 23: LLM system prompt (Part 1) for Task 2 Approach 2.

Genaiecom °25, September 22, 2025, Prague, CZ Ghazarian et al.

LLM System Prompt (Part 2) for Task 2 Approach 2

{continued from Table 23}
<policy>
- Ask for customer's full name, username, email address, and order ID to validate the purchase
- Check how many days the customer has been waiting for the order
- If less than 7 days, explain that orders can sometimes take up to 7 days and ask for patience
- If 7 days or more, apologize for the delay and let them know you will resend the order

- Ask for their current mailing address to send the new order

- Confirm the brand, product type, and any other details about the missing item

- Let them know a replacement order has been placed and provide an estimate on when it will arrive
- Offer further assistance or ask if there is anything else needed
- Thank the customer for their patience and understanding
</policy>

<reason>

First I generate the following policy given the conversation and the response:

<gen_policy>

- Check how many days the customer has been waiting for the order

- If less than three weeks, explain that orders can sometimes take up to three weeks and ask for patience
</gen_policy>

Since the generated policy does not exist in the given policy

therefore I specify the response as "no" complining with the policy.
</reason>

<compliant>

no

</compliant>

Instructions:

First provide reasoning of how did you assess the compliance of the agent’s next response to the policy in <reason> tag. In <reason>
tag you should generate the policy given the conversation and response in <gen_policy> tags and then generate the output in
<compliant> tag. Generate “yes” as the output if the <gen_policy> is part of <policy> and “no” otherwise.

Table 24: LLM system prompt (Part 2) for Task 2 Approach 2.

LLM User Prompt for Task 2

<conversation> conversation </conversation>
<response> ground_truth_response </response>
<policy> policy </policy>

Table 25: LLM user prompt for Task 2.

TOD-ProcBench: Benchmarking Complex Instruction-Following in Task-Oriented Dialogues Genaiecom 25, September 22, 2025, Prague, CZ

LLM System Prompt for Task 3

You are given a part of conversation between a customer and an agent in <conversation> tags, where customer interacts with the agent for a specific
intent. In addition, you are given the policy in <policy> tags that agent needs to follow in order to help the customer meet her intent.

Your task is to identify the steps that the agent has followed up to the current point from the policy and according to the next step in the policy
generate an answer which is compliant with the policy.

To generate the agent’s next response do the following steps:

1. read the whole conversation in <conversation> tag.

2. read the whole policy in <policy> tag.

3. based on the conversation, identify all the steps that agent has followed from the policy and get the next action from the policy to conduct.

4. generate the agent’s next response, using the same language as the conversation transcript, based on the retrieved next step from the policy such
that:

a) all the provided information should be covered in the policy’s next step.

b) do NOT hallucinate and do NOT generate detailed information that do not exist in the provided policy’s next step.

c) generate short responses that directly address the next best action coming from the policy.

First provide reasoning of how did you generate the next response in <reason> tag and then generate the next agent’s response, using the same
language as the conversation transcript, in <response> tags for the given conversation that matches with one next step in the provided policy. The
generated response has to be short (less than three sentences).

Table 26: LLM system prompt for Task 3.

LLM User Prompt for Task 3

<conversation> conversation </conversation>
<policy> policy </policy>

Table 27: LLM user prompt for Task 3.

Genaiecom °25, September 22, 2025, Prague, CZ Ghazarian et al.

D Results

In this section, we present the results tables for experiments which
were not presented in tables within the main text due to space
constraints.

TOD-ProcBench: Benchmarking Complex Instruction-Following in Task-Oriented Dialogues Genaiecom 25, September 22, 2025, Prague, CZ

Model Language Overall Instruction Retrieval Begin Middle End

Claude3.7-Sonnet FR 0.4041 0.8286 0.4141 0.3908 0.4065
Claude3.7-Sonnet ES 0.4005 0.8329 0.3955 0.4100 0.3963
Claude3.7-Sonnet EN 0.3932 0.8205 0.3959 0.3895 0.3939
Claude3.7-Sonnet DE 0.3896 0.8195 0.3885 0.3926 0.3877
Claude3.7-Sonnet HI 0.3882 0.8137 0.3785 0.4004 0.3867
Claude3.7-Sonnet AR 0.3778 0.8053 0.3820 0.3734 0.3775
Claude3.7-Sonnet ZH 0.3768 0.8096 0.3808 0.3730 0.3761
Claude3.5-Sonnet-V2 FR 0.3613 0.7372 0.3615 0.3695 0.3520
Claude3.5-Sonnet-V2 DE 0.3524 0.7276 0.3483 0.3582 0.3510
Claude3.5-Sonnet-V2 ES 0.3472 0.7227 0.3518 0.3521 0.3361
Claude3.5-Sonnet-V1 HI 0.3365 0.7260 0.3386 0.3399 0.3303
Claude3.5-Sonnet-V2 EN 0.3312 0.7311 0.3270 0.3333 0.3341
Claude3.5-Sonnet-V1 FR 0.3299 0.7112 0.3522 0.3190 0.3144
Claude3.5-Sonnet-V1 DE 0.3283 0.7088 0.3386 0.3181 0.3269
Claude3.5-Sonnet-V1 ES 0.3268 0.7073 0.3282 0.3316 0.3197
Claude3.5-Sonnet-V1 ZH 0.3216 0.7103 0.3185 0.3359 0.3095
Claude3.5-Sonnet-V2 ZH 0.3209 0.6977 0.3212 03129 0.3293
Claude3.5-Sonnet-V1 AR 0.3206 0.7063 0.3293 0.3146 0.3163
Claude3.5-Sonnet-V2 HI 0.3141 0.6842 0.3317 0.3102 0.2965
Qwen3-14B EN 0.3122 0.7792 0.1645 0.2828 0.5289
Qwen3-14B HI 0.3017 0.7582 0.1718 0.2693 0.4995
Qwen3-14B ZH 0.2983 0.7392 0.1521 0.2654 0.5169
Qwen3-14B FR 0.2976 0.7444 0.1540 0.2688 0.5082
Claude3.5-Sonnet-V2 AR 0.3036 0.6764 0.3007 0.3102 0.2999
Claude3.5-Sonnet-V1 EN 0.2963 0.6491 0.3019 0.2911 0.2951
Qwen3-14B AR 0.2934 0.7135 0.1726 0.2505 0.4913
Qwen3-14B ES 0.2874 0.7479 0.1521 0.2519 0.4952
Qwen3-14B DE 0.2786 0.7430 0.1242 0.2558 0.4961
Gemma3-27B-IT EN 0.2221 0.6138 0.0770 0.2144 0.4113
Gemma3-27B-IT DE 0.2088 0.5655 0.0708 0.2044 0.3857
Gemma3-27B-IT ES 0.1978 0.5646 0.0658 0.1834 0.3780
Gemma3-27B-IT ZH 0.1921 0.5324 0.0550 0.1891 0.3664
Gemma3-27B-IT HI 0.1878 0.5355 0.0701 0.1786 0.3447
Gemma3-27B-IT FR 0.1877 0.5175 0.0441 0.1861 0.3684
Gemma3-27B-IT AR 0.1585 0.4615 0.0433 0.1464 0.3153
Llama3.3-70B EN 0.1358 0.2042 0.1374 0.1338 0.1360
Llama3.3-70B ES 0.1280 0.1976 0.1327 0.1298 0.1201
Llama3.3-70B FR 0.1146 0.1770 0.1188 0.1181 0.1056
Llama3.3-70B DE 0.1126 0.1729 0.1262 0.1089 0.0998
Llama3.3-70B ZH 0.0840 0.1688 0.0851 0.0780 0.0892
Llama3.3-70B AR 0.0299 0.0653 0.0298 0.0270 0.0333
Llama3.3-70B HI 0.0240 0.0631 0.0252 0.0227 0.0241

Table 28: Task 1 accuracy of top k = 1 instruction retrieval and next agent action prediction (only format f;). Results are shown
across different models and conversation languages (Arabic (AR), Chinese (ZH), English (EN), French (FR), German (DE), Hindi
(HI), Spanish (ES)).

Genaiecom °25, September 22, 2025, Prague, CZ Ghazarian et al.

Model Language Overall Instruction Retrieval Begin Middle End
Claude3.7-Sonnet EN 0.4310 0.8943 0.4481 0.4074 0.4359
Claude3.7-Sonnet FR 0.4287 0.9022 0.4346 0.4283 0.4219
Claude3.7-Sonnet ES 0.4246 0.9055 0.4272 0.4179 0.4286
Claude3.5-Sonnet-V2 DE 0.4237 0.8802 0.4276 0.4222 0.4204
Claude3.7-Sonnet AR 0.4234 0.8998 0.4149 04314 0.4253
Claude3.7-Sonnet DE 0.4205 0.8992 0.4327 0.4126 0.4142
Claude3.7-Sonnet HI 0.4198 0.9003 0.4129 0.4227 0.4253
Claude3.5-Sonnet-V2 FR 0.4194 0.8838 0.4319 0.4200 0.4031
Claude3.7-Sonnet ZH 0.4146 0.8954 0.4122 0.4070 0.4262
Claude3.5-Sonnet-V2 ES 0.4146 0.8825 0.4187 0.4109 0.4137
Claude3.5-Sonnet-V2 HI 0.4040 0.8819 0.3913 0.4131 0.4098
Claude3.5-Sonnet-V2 EN 0.3941 0.8721 0.4036 0.3904 0.3862
Claude3.5-Sonnet-V2 AR 0.3929 0.8753 0.3924 0.4048 0.3804
Claude3.5-Sonnet-V2 ZH 0.3922 0.8750 0.3901 0.3983 0.3881
Claude3.5-Sonnet-V1 FR 0.3745 0.8159 0.3808 0.3721 0.3693
Claude3.5-Sonnet-V1 DE 0.3744 0.8207 0.3750 0.3725 0.3756
Claude3.5-Sonnet-V1 HI 0.3706 0.8179 0.3769 0.3625 0.3717
Claude3.5-Sonnet-V1 ES 0.3689 0.8202 0.3731 0.3756 0.3563
Claude3.5-Sonnet-V1 AR 0.3532 0.8130 0.3595 0.3503 0.3486
Claude3.5-Sonnet-V1 ZH 0.3491 0.8066 0.3518 0.3521 0.3423
Claude3.5-Sonnet-V1 EN 0.3485 0.7830 0.3533 0.3490 0.3419
Qwen3-14B ES 0.3340 0.8552 0.1788 0.2998 0.5651
Qwen3-14B AR 0.3286 0.8557 0.1753 0.2824 0.5709
Qwen3-14B EN 0.3279 0.8419 0.1668 0.2880 0.5728
Qwen3-14B DE 0.3273 0.8441 0.1548 0.3041 0.5680
Qwen3-14B HI 0.3207 0.8376 0.1560 0.3015 0.5473
Qwen3-14B ZH 0.3151 0.8260 0.1513 0.2932 0.5434
Qwen3-14B FR 0.3122 0.8199 0.1389 0.2906 0.5521
Gemma3-27B-IT HI 0.2540 0.7230 0.0786 0.2558 0.4706
Gemma3-27B-IT EN 0.2528 0.7283 0.0809 0.2414 0.4797
Llama3.3-70B EN 0.2497 0.6612 0.2620 0.2366 0.2488
Gemma3-27B-IT FR 0.2444 0.6970 0.0592 0.2227 0.4990
Gemma3-27B-IT DE 0.2408 0.6961 0.0728 0.2248 0.4677
Gemma3-27B-IT AR 0.2364 0.7102 0.0813 0.2209 0.4470
Llama3.3-70B FR 0.2353 0.6872 0.2512 0.2248 0.2271
Gemma3-27B-IT ES 0.2349 0.6885 0.0677 0.2044 0.4769
Llama3.3-70B DE 0.2307 0.6578 0.2194 0.2423 0.2319
Llama3.3-70B ES 0.2305 0.6859 0.2357 0.2322 0.2223
Gemma3-27B-IT ZH 0.2262 0.6837 0.0565 0.2266 0.4373
Llama3.3-70B ZH 0.1293 0.4207 0.1277 0.1216 0.1398
Llama3.3-70B AR 0.0511 0.1906 0.0534 0.0449 0.0550
Llama3.3-70B HI 0.0390 0.1769 0.0430 0.0375 0.0357

Table 29: Task 1 accuracy of top k = 2 instructions retrieval and next agent action prediction (only format f;). Results are shown
across different models and conversation languages (Arabic (AR), Chinese (ZH), English (EN), French (FR), German (DE), Hindi
(HI), Spanish (ES)).

TOD-ProcBench: Benchmarking Complex Instruction-Following in Task-Oriented Dialogues Genaiecom 25, September 22, 2025, Prague, CZ

Model k DataFormat Overall Instruction Retrieval Begin Middle End

Claude3.7-Sonnet 2 fi 0.4310 0.8943 0.4481 0.4074 0.4359
Claude3.7-Sonnet 2 f2 0.4215 0.9071 0.4122 0.4366 0.4166
Claude3.7-Sonnet 2 f 0.4205 0.8880 0.4191 0.4179 0.4253
Claude3.5-Sonnet-V2 2 f 0.4182 0.8765 0.4214 0.4126 0.4204
Claude3.7-Sonnet 1 2 0.3948 0.8267 0.3878 0.3834 0.4161
Claude3.5-Sonnet-V2 2 f 0.3941 0.8721 0.4036 0.3904 0.3862
Claude3.5-Sonnet-V2 2 f 0.3939 0.8631 0.4005 0.3956 0.3838
Claude3.7-Sonnet 1 fi 0.3932 0.8205 0.3959 0.3895 0.3939
Claude3.7-Sonnet 1 f 0.3869 0.8163 0.3932 0.3821 0.3843
Claude3.5-Sonnet-V1 2 5 0.3716 0.8304 0.3750 0.3730 0.3660
Claude3.5-Sonnet-V1 2 fi 0.3485 0.7830 0.3533 0.3490 0.3419
Claude3.5-Sonnet-V1 2 f 0.3383 0.7910 0.3437 0.3259 0.3452
Claude3.5-Sonnet-V2 1 fi 0.3312 0.7311 0.3270 0.3333 0.3341
Qwen3-14B 2 fi 0.3279 0.8419 0.1668 0.2880 0.5728
Claude3.5-Sonnet-V1 1 f 0.3187 0.7057 0.3185 0.3342 0.3018
Qwen3-14B 1 fi 0.3122 0.7792 0.1645 0.2828 0.5289
Claude3.5-Sonnet-V1 1 fi 0.2963 0.6491 0.3019 0.2911 0.2951
Qwen3-14B 2 f 0.2961 0.8418 0.1250 0.2623 0.5468
Qwen3-14B 1 f2 0.2845 0.7713 0.1142 0.2584 0.5256
Qwen3-14B 2 f 0.2712 0.7879 0.1130 0.2248 0.5198
Gemma3-27B-IT 2 f 0.2559 0.7559 0.0755 0.2392 0.4990
Claude3.5-Sonnet-V2 1 f 0.2543 0.5152 0.2604 0.2606 0.2396
Gemma3-27B-IT 2 f 0.2528 0.7283 0.0809 0.2414 0.4797
Llama3.3-70B 2 f 0.2497 0.6612 0.2620 0.2366 0.2488
Gemma3-27B-IT 2 f 0.2362 0.6717 0.07314 0.2209 0.4561
Llama3.3-70B 2 f 0.2362 0.5924 0.2318 0.2327 0.2454
Gemma3-27B-IT 1 fi 0.2221 0.6138 0.0770 0.2144 0.4113
Qwen3-14B 1 f 0.2110 0.6368 0.0681 0.1887 0.4137
Claude3.5-Sonnet-V2 1 f 0.2084 0.4654 0.2105 0.2044 0.2102
Llama3.3-70B 2 f 0.2065 0.5376 0.2020 0.2013 0.2179
Claude3.5-Sonnet-V1 1 f2 0.2048 0.5038 0.2051 0.2026 0.2068
Gemma3-27B-IT 1 f 0.1847 0.5225 0.0557 0.1699 0.3616
Gemma3-27B-IT 1 f 0.1740 0.4960 0.0526 0.1695 0.3303
Llama3.3-70B 1 f2 0.1447 0.2503 0.1463 0.1477 0.1393
Llama3.3-70B 1 f 0.1358 0.2042 0.1374 0.1338 0.1360
Llama3.3-70B 1 f 0.1299 0.2444 0.1413 0.1268 0.1191

Table 30: Task 1 accuracy of top k = 1 and k = 2 instructions retrieval and next agent action prediction (only English
conversations). Results are shown across different models and the three complex instruction formats (fi, f2, f3).

Model Approach 1 Approach 2

fi fa s fi fo B
Claude3.7-Sonnet 0.7593 0.7631 0.7566 | 0.7364 0.7281 0.7296
Claude3.5-Sonnet-V2 | 0.7215 0.7210 0.7202 | 0.6935 0.6862 0.6857
Claude3.5-Sonnet-V1 | 0.6857 0.6973 0.6884 | 0.6847 0.6761 0.6713

Llama3.3-70B 0.7283 0.7283 0.7159 | 0.5636 0.5747 0.5368
Qwen3-14B 0.7046 0.6975 0.6948 | 0.6937 0.6910 0.6811
Gemma3-27B-IT 0.6968 0.6857 0.6688 | 0.5616 0.5454 0.5396

Table 31: Task 2 accuracy for English conversations across approaches and complex instruction formats. The best result per
column is bolded and the best result per model-approach pair is underlined.

Genaiecom °25, September 22, 2025, Prague, CZ

Model fi 2 5

Claude3.7-Sonnet 0.9529 0.9574 0.9565
Claude3.5-Sonnet-V2 0.9532 0.9498 0.9471
Claude3.5-Sonnet-V1 0.9254 0.9356 0.9251
Gemma3-27B-IT 0.8952 0.8734 0.8695
Qwen3-14B 0.2269 0.2208 0.2178
Llama3.3-70B 0.1435 0.1610 0.1511

Ghazarian et al.

Table 32: Task 3 compliance rate across models and complex instruction formats (only English conversations). The best result

per complex instruction format is bolded and the best result per model is underlined.

	Abstract
	1 Introduction
	2 Related Work
	3 TOD-ProcBench
	3.1 Complex Instruction Components
	3.2 Instruction Document Construction
	3.3 Expanding to Multilingual Conversations
	3.4 Quality Verification

	4 Tasks
	4.1 Task 1: Next Action Prediction
	4.2 Task 2: Compliance Evaluation
	4.3 Task 3: Compliant Response Generation

	5 Conclusion
	Acknowledgments
	References
	A Datasets
	B Complex Instruction Formats in TOD-ProcBench
	C LLM Prompts
	D Results

